豆瓣电影信息爬虫实战-2024年6月

本文涉及的产品
云解析DNS-重点域名监控,免费拨测 20万次(价值200元)
简介: 使用Python和`requests`、`PyQuery`库,本文教程教你如何编写一个豆瓣电影列表页面的爬虫,抓取电影标题、导演、主演等信息。首先确保安装所需库,然后了解技术栈,包括Python、Requests、PyQuery和正则表达式。爬虫逻辑包括发送HTTP请求、解析HTML、提取数据。代码示例展示了如何实现这一过程,最后运行爬虫并将结果保存为JSON文件。注意遵守网站使用条款和应对反爬策略。

豆瓣电影信息爬虫教程

摘要

本文将详细介绍如何使用Python编写一个爬虫程序,用于抓取豆瓣电影列表页面上的电影详细信息。通过本教程,你将学习到如何使用requestsPyQuery库来发送HTTP请求、解析HTML内容,并提取所需的数据。

目标网址:https://www.douban.com/doulist/240962/

image-20240611143649561.png

目录

环境搭建

在开始之前,请确保你的Python环境已经安装了以下库:

pip install requests pyquery

技术栈介绍

  • Python: 一种易于学习且功能强大的编程语言。
  • Requests: 用于发送HTTP请求的库。
  • PyQuery: 类似于jQuery的库,用于解析HTML文档。
  • re (正则表达式): 用于字符串搜索和匹配。

爬虫逻辑概述

本爬虫的主要任务是从一个给定的豆瓣电影列表页面URL中提取电影的详细信息,包括:

  • 电影标题
  • 导演
  • 主演
  • 类型
  • 制作地区
  • 发行年份
  • 评分数量
  • 每部电影的详细URL

详细代码解析

import requests
from pyquery import PyQuery as pq
import re
import json
from datetime import datetime

def doulist_crawler(url):
    '''
    联系方式:
    wx: Wusp1994
    企鹅号: 812190146
    此函数爬取豆瓣电影列表页面,并提取列出的电影的详细信息。
    该函数向指定的豆瓣电影列表URL发送GET请求,并使用预定义的头部信息来模拟浏览器请求。如果请求成功,它将使用PyQuery解析HTML内容,并提取电影的详细信息,如标题、导演、主演、类型、地区、年份、评分和评分数量。每部电影的信息存储在一个字典中,并添加到名为'doulist'的列表中。然后打印出详细信息。
    提取的数据包括:
    - 电影标题
    - 导演
    - 主演
    - 类型
    - 制作地区
    - 发行年份
    - 评分数量
    - 每部电影的详细URL
    参数:
        url (str): 要爬取的豆瓣-豆列的电影列表页面的URL。
        https://www.douban.com/doulist/240962/
    返回:
        list: 包含每部电影详细信息的字典组成的列表。
    :return:
    '''
    # 定义请求头
    headers = {
   
   
        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3',
        'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8',
        # 其他需要的请求头...
    }
    # 发送 GET 请求并获取响应内容
    response = requests.get(url, headers=headers)

    # 确保请求成功
    if response.status_code == 200:
        # 使用 PyQuery 解析网页内容
        doc = pq(response.text)
        doulist_item_doc = doc(".doulist-item")
        doulist = []
        for item in doulist_item_doc.items():
            item_dict = {
   
   }
            # 初始化变量
            director = None
            starring = None
            genre = None
            region = None
            year = None
            detail_url = item(".title a").attr("href")
            title = item(".title a").text()
            rating_nums = item(".rating_nums").text()
            rating_count_text = item('.rating span:contains("人评价")').text()
            rating_count = int(re.search(r'\d+', rating_count_text).group(0))
            lines = item('div.abstract').text().split('\n')
            for line in lines:
                if '导演' in line:
                    director = line.split('导演:')[-1].strip()
                elif '主演' in line:
                    starring = line.split('主演:')[-1].strip()
                elif '类型' in line:
                    genre = line.split('类型:')[-1].strip()
                elif '制片国家/地区' in line:
                    region = line.split('制片国家/地区:')[-1].strip()
                elif '年份' in line:
                    year = line.split('年份:')[-1].strip()

            item_dict['director'] = director
            item_dict['starring'] = starring
            item_dict['genre'] = genre
            item_dict['region'] = region
            item_dict['year'] = year
            item_dict['detail_url'] = detail_url
            item_dict['title'] = title
            item_dict['rating_count'] = rating_count
            doulist.append(item_dict)

        return doulist  # 返回电影列表
    else:
        # 联系方式:
        # wx: Wusp1994
        # 企鹅号: 812190146
        print(f"请求失败,状态码:{response.status_code}")
        return []  # 如果请求失败,返回空列表

if __name__ == "__main__":
    # 联系方式:
    # wx: Wusp1994
    # 企鹅号: 812190146
    move_list = doulist_crawler('https://www.douban.com/doulist/240962/')
    json_data = json.dumps(move_list, ensure_ascii=False)
    print(json_data)
    # 将JSON数据写入到文件中
    filename = f"电影列表{datetime.now().strftime('%Y%m%d%H%M%S')}.json"
    with open(filename, 'w', encoding='utf-8') as file:
        # 写入JSON数据,ensure_ascii=False 确保汉字不转义
        json.dump(json.loads(json_data), file, ensure_ascii=False, indent=4)

    print(f"JSON数据已写入到文件:{filename}")

导入库

import requests
from pyquery import PyQuery as pq
import re

定义爬虫函数

def doulist_crawler(url):
    # 函数定义,接受一个豆瓣电影列表页面的URL

设置请求头

headers = {
   
   
    'User-Agent': '...',
    'Accept': '...'
}

发送GET请求

response = requests.get(url, headers=headers)

检查响应状态

if response.status_code == 200:
    # 请求成功,继续处理

解析HTML内容

doc = pq(response.text)

提取电影信息

遍历电影列表项,提取每部电影的相关信息:

for item in doulist_item_doc.items():
    # 提取信息并存储到字典

存储与返回电影信息

doulist.append(item_dict)
return doulist

运行爬虫

要运行爬虫,只需调用doulist_crawler函数,并传入豆瓣电影列表页面的URL:

move_list = doulist_crawler('https://www.douban.com/doulist/240962/')
json_data = json.dumps(move_list, ensure_ascii=False)
print(json_data)
# 将JSON数据写入到文件中
filename = f"电影列表{datetime.now().strftime('%Y%m%d%H%M%S')}.json"
with open(filename, 'w', encoding='utf-8') as file:
    # 写入JSON数据,ensure_ascii=False 确保汉字不转义
    json.dump(json.loads(json_data), file, ensure_ascii=False, indent=4)

    print(f"JSON数据已写入到文件:{filename}")

image-20240611144658847.png

注意事项

  • 遵守豆瓣的使用条款,避免频繁请求。
  • 考虑网站的反爬虫机制,可能需要使用代理或更新请求头。
  • 爬取的数据仅用于个人学习和研究,不得用于商业用途。

结论

通过本文,你已经学习了如何使用Python编写一个简单的爬虫来抓取豆瓣电影信息。这是一个实践网络请求和HTML解析的好机会。希望本文对你有所帮助,祝你编程愉快。

目录
相关文章
|
2月前
|
数据采集 Web App开发 数据安全/隐私保护
实战:Python爬虫如何模拟登录与维持会话状态
实战:Python爬虫如何模拟登录与维持会话状态
|
3月前
|
数据采集 弹性计算 Kubernetes
单机扛不住,我把爬虫搬上了 Kubernetes:弹性伸缩与成本优化的实战
本文讲述了作者在大规模爬虫项目中遇到的挑战,包括任务堆积、高失败率和成本失控。通过将爬虫项目迁移到Kubernetes并使用HPA自动伸缩、代理池隔离和Redis队列,作者成功解决了这些问题,提高了性能,降低了成本,并实现了系统的弹性伸缩。最终,作者通过这次改造学到了性能、代理隔离和成本控制的重要性。
135 2
单机扛不住,我把爬虫搬上了 Kubernetes:弹性伸缩与成本优化的实战
|
4月前
|
数据采集 JSON Java
Java爬虫获取1688店铺所有商品接口数据实战指南
本文介绍如何使用Java爬虫技术高效获取1688店铺商品信息,涵盖环境搭建、API调用、签名生成及数据抓取全流程,并附完整代码示例,助力市场分析与选品决策。
|
2月前
|
数据采集 监控 数据库
Python异步编程实战:爬虫案例
🌟 蒋星熠Jaxonic,代码为舟的星际旅人。从回调地狱到async/await协程天堂,亲历Python异步编程演进。分享高性能爬虫、数据库异步操作、限流监控等实战经验,助你驾驭并发,在二进制星河中谱写极客诗篇。
Python异步编程实战:爬虫案例
|
2月前
|
数据采集 人工智能 JSON
Prompt 工程实战:如何让 AI 生成高质量的 aiohttp 异步爬虫代码
Prompt 工程实战:如何让 AI 生成高质量的 aiohttp 异步爬虫代码
|
3月前
|
数据采集 存储 XML
Python爬虫技术:从基础到实战的完整教程
最后强调: 父母法律法规限制下进行网络抓取活动; 不得侵犯他人版权隐私利益; 同时也要注意个人安全防止泄露敏感信息.
729 19
|
2月前
|
数据采集 机器学习/深度学习 人工智能
反爬虫机制深度解析:从基础防御到高级对抗的完整技术实战
本文系统阐述了反爬虫技术的演进与实践,涵盖基础IP限制、User-Agent检测,到验证码、行为分析及AI智能识别等多层防御体系,结合代码实例与架构图,全面解析爬虫攻防博弈,并展望智能化、合规化的发展趋势。
反爬虫机制深度解析:从基础防御到高级对抗的完整技术实战
|
2月前
|
数据采集 运维 监控
爬虫与自动化技术深度解析:从数据采集到智能运维的完整实战指南
本文系统解析爬虫与自动化核心技术,涵盖HTTP请求、数据解析、分布式架构及反爬策略,结合Scrapy、Selenium等框架实战,助力构建高效、稳定、合规的数据采集系统。
爬虫与自动化技术深度解析:从数据采集到智能运维的完整实战指南
|
4月前
|
数据采集 存储 NoSQL
Scrapy 框架实战:构建高效的快看漫画分布式爬虫
Scrapy 框架实战:构建高效的快看漫画分布式爬虫
|
3月前
|
数据采集 Web App开发 机器学习/深度学习
Selenium爬虫部署七大常见错误及修复方案:从踩坑到避坑的实战指南
本文揭秘Selenium爬虫常见“翻车”原因,涵盖浏览器闪退、元素定位失败、版本冲突、验证码识别等七大高频问题,结合实战案例与解决方案,助你打造稳定高效的自动化爬虫系统,实现从“能用”到“好用”的跨越。
682 0