轻量级分布式事务实现:掌握最大努力通知方案

简介: 本文介绍了分布式事务的重要概念,特别是最大努力通知方案。最大努力通知是一种基于消息通知的分布式事务处理方式,通过异步通知确保最终一致性。方案包括事务消息发送、消息中间件持久化和最大努力通知三个步骤。虽然它实现简单、性能高且灵活,但可能无法保证强一致性,且存在重试和人工干预的成本。文中还提供了一个电商订单与库存系统同步的案例,并分析了该方案的优缺点。



Hey,大家好,我是小米,一个喜欢研究技术的29岁程序员!今天我想跟大家分享一个在分布式系统中非常重要的概念——分布式事务。而我们今天的重点是分布式事务中的一种实现方案:最大努力通知方案。

什么是分布式事务?

首先,我们先来了解一下什么是分布式事务。简单来说,当一个事务涉及到多个独立的系统或者数据库时,我们就称之为分布式事务。为了保证数据的一致性,分布式事务需要协调各个系统,使它们在事务完成时保持一致的状态。

为什么需要分布式事务?

在现代互联网应用中,单个系统往往无法满足业务需求,必须通过多个子系统协作完成一项任务。例如,一个电商平台的订单系统需要同时操作库存、支付、物流等多个系统,这些系统之间的数据一致性非常重要。如果缺少分布式事务的支持,任何一个系统的失败都可能导致数据的不一致,从而引发严重的问题。

分布式事务的挑战

在分布式环境下,事务的一致性、可用性和分区容错性(即CAP理论)很难同时兼顾。传统的两阶段提交(2PC)虽然能够解决部分问题,但由于其复杂性和对性能的影响,在高并发的互联网场景下并不理想。因此,出现了各种轻量级、低耦合的分布式事务解决方案,其中之一就是我们今天要讲的最大努力通知方案。

什么是最大努力通知方案?

最大努力通知方案(Best Effort Notification)是一种基于消息通知的分布式事务解决方案。其核心思想是通过异步通知各个子系统,尽量保证最终一致性。在这个过程中,系统会尽最大努力确保通知成功,即使有些通知可能会失败,但整体上系统会通过多次重试等机制提高通知成功率。

核心思路:

  • 事务消息发送:在事务发起方执行本地事务的同时,将需要通知的内容以消息的形式发送到消息中间件。
  • 消息中间件持久化:消息中间件负责持久化消息,并保证消息的可靠传输。
  • 最大努力通知:消息中间件将消息通知给相应的子系统。如果通知失败,可以通过重试、人工干预等方式继续尝试,直到达到预期结果。

最大努力通知方案的实现步骤

第一步:事务消息发送

在事务发起方执行本地事务时,需要将事务状态和相关信息发送到消息中间件。这一步可以通过以下流程实现:

  • 事务发起方执行本地事务操作,例如更新数据库状态。
  • 事务发起方将需要通知的内容封装成消息,并发送到消息中间件。
  • 消息中间件接收到消息后,进行持久化存储,以保证消息不会丢失。

第二步:消息中间件持久化

消息中间件是整个方案的核心,它不仅负责消息的持久化存储,还负责消息的可靠传输和通知。在选择消息中间件时,我们需要考虑以下几个因素:

  • 可靠性:消息中间件需要具备高可靠性,保证消息不会丢失。
  • 可扩展性:消息中间件需要支持高并发,能够处理大量的消息请求。
  • 消息重试机制:在通知失败时,消息中间件需要具备消息重试机制,确保消息能够最终送达。

目前,常用的消息中间件有Kafka、RabbitMQ、RocketMQ等,它们在可靠性和可扩展性方面表现优秀,是实现最大努力通知方案的理想选择。

第三步:最大努力通知

消息中间件将消息通知给相应的子系统。在这一步,可能会遇到以下几种情况:

  • 通知成功:消息中间件成功将消息通知给子系统,并收到确认。
  • 通知失败:由于网络问题、系统故障等原因,消息中间件未能成功通知子系统。
  • 为了提高通知成功率,我们可以采取以下措施:
  • 消息重试:在通知失败时,消息中间件可以设置重试策略,定期重新尝试通知,直到成功或达到最大重试次数。
  • 人工干预:在多次重试仍失败的情况下,可以设置报警机制,通知运维人员进行人工干预,确保事务最终一致性。

实现最大努力通知方案的实际案例

接下来,我们通过一个实际案例来说明最大努力通知方案的实现过程。

案例背景:

某电商平台在用户下单时,需要同时更新订单系统和库存系统。如果订单系统和库存系统的数据不一致,会导致订单无法正常处理。

实现步骤:

  • 订单系统执行本地事务:用户提交订单后,订单系统首先在本地数据库中记录订单信息,并将需要通知库存系统的内容封装成消息。
  • 发送事务消息:订单系统将消息发送到消息中间件,消息中间件对消息进行持久化存储。
  • 消息中间件通知库存系统:消息中间件将消息通知给库存系统,库存系统接收到消息后,更新库存状态。
  • 处理通知失败:如果消息中间件未能成功通知库存系统,可以通过设置重试策略,定期重新尝试通知。同时,如果重试多次仍失败,可以设置报警机制,通知运维人员进行人工干预。

通过这种方式,即使在网络不稳定或系统故障的情况下,订单系统和库存系统的数据也能尽量保持一致,保证了系统的最终一致性。

最大努力通知方案的优缺点

优点:

  • 实现简单:相对于传统的两阶段提交,最大努力通知方案实现相对简单,易于维护。
  • 性能高:由于采用异步通知的方式,事务发起方不需要等待通知结果,可以提高系统的整体性能。
  • 灵活性强:最大努力通知方案可以根据具体业务需求,灵活设置重试策略和人工干预机制。

缺点:

  • 一致性保证不足:由于采用异步通知的方式,无法完全保证数据的一致性,可能会存在短暂的不一致情况。
  • 重试和人工干预成本高:在通知失败的情况下,需要设置重试策略和人工干预机制,增加了系统的复杂度和运维成本。

END

最大努力通知方案作为一种轻量级的分布式事务解决方案,在保证系统性能和灵活性的同时,尽量提高数据的一致性,适用于大部分互联网应用场景。当然,它也有一定的局限性,在一些对一致性要求极高的场景下,可能需要结合其他分布式事务解决方案共同使用。

希望今天的分享能对大家有所帮助!如果你在分布式事务的实现过程中遇到问题,或者有其他好的经验和建议,欢迎在评论区留言交流!小米会在第一时间和大家互动哦!

记得关注我的公众号,获取更多技术干货分享!我们下次再见啦!

本文作者:小米,一个热爱技术分享的29岁程序员。如果你喜欢我的文章,欢迎关注我的微信公众号软件求生,获取更多技术干货!

相关文章
|
1月前
|
消息中间件 架构师 数据库
本地消息表事务:10Wqps 高并发分布式事务的 终极方案,大厂架构师的 必备方案
45岁资深架构师尼恩分享了一篇关于分布式事务的文章,详细解析了如何在10Wqps高并发场景下实现分布式事务。文章从传统单体架构到微服务架构下分布式事务的需求背景出发,介绍了Seata这一开源分布式事务解决方案及其AT和TCC两种模式。随后,文章深入探讨了经典ebay本地消息表方案,以及如何使用RocketMQ消息队列替代数据库表来提高性能和可靠性。尼恩还分享了如何结合延迟消息进行事务数据的定时对账,确保最终一致性。最后,尼恩强调了高端面试中需要准备“高大上”的答案,并提供了多个技术领域的深度学习资料,帮助读者提升技术水平,顺利通过面试。
本地消息表事务:10Wqps 高并发分布式事务的 终极方案,大厂架构师的 必备方案
|
1月前
|
消息中间件 SQL 中间件
大厂都在用的分布式事务方案,Seata+RocketMQ带你打破10万QPS瓶颈
分布式事务涉及跨多个数据库或服务的操作,确保数据一致性。本地事务通过数据库直接支持ACID特性,而分布式事务则需解决跨服务协调难、高并发压力及性能与一致性权衡等问题。常见的解决方案包括两阶段提交(2PC)、Seata提供的AT和TCC模式、以及基于消息队列的最终一致性方案。这些方法各有优劣,适用于不同业务场景,选择合适的方案需综合考虑业务需求、系统规模和技术团队能力。
237 7
|
1月前
|
缓存 NoSQL Java
Spring Boot中的分布式缓存方案
Spring Boot提供了简便的方式来集成和使用分布式缓存。通过Redis和Memcached等缓存方案,可以显著提升应用的性能和扩展性。合理配置和优化缓存策略,可以有效避免常见的缓存问题,保证系统的稳定性和高效运行。
54 3
|
2月前
|
NoSQL 安全 PHP
hyperf-wise-locksmith,一个高效的PHP分布式锁方案
`hyperf-wise-locksmith` 是 Hyperf 框架下的互斥锁库,支持文件锁、分布式锁、红锁及协程锁,有效防止分布式环境下的竞争条件。本文介绍了其安装、特性和应用场景,如在线支付系统的余额扣减,确保操作的原子性。
39 4
|
2月前
|
NoSQL 算法 关系型数据库
分布式 ID 详解 ( 5大分布式 ID 生成方案 )
本文详解分布式全局唯一ID及其5种实现方案,关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
分布式 ID 详解 ( 5大分布式 ID 生成方案 )
|
3月前
|
存储 缓存 NoSQL
分布式架构下 Session 共享的方案
【10月更文挑战第15天】在实际应用中,需要根据具体的业务需求、系统架构和性能要求等因素,选择合适的 Session 共享方案。同时,还需要不断地进行优化和调整,以确保系统的稳定性和可靠性。
|
3月前
|
SQL NoSQL 安全
分布式环境的分布式锁 - Redlock方案
【10月更文挑战第2天】Redlock方案是一种分布式锁实现,通过在多个独立的Redis实例上加锁来提高容错性和可靠性。客户端需从大多数节点成功加锁且总耗时小于锁的过期时间,才能视为加锁成功。然而,该方案受到分布式专家Martin的质疑,指出其在特定异常情况下(如网络延迟、进程暂停、时钟偏移)可能导致锁失效,影响系统的正确性。Martin建议采用fencing token方案,以确保分布式锁的正确性和安全性。
63 0
|
5月前
|
存储 NoSQL Java
一天五道Java面试题----第十一天(分布式架构下,Session共享有什么方案--------->分布式事务解决方案)
这篇文章是关于Java面试中的分布式架构问题的笔记,包括分布式架构下的Session共享方案、RPC和RMI的理解、分布式ID生成方案、分布式锁解决方案以及分布式事务解决方案。
一天五道Java面试题----第十一天(分布式架构下,Session共享有什么方案--------->分布式事务解决方案)
|
4月前
|
运维 NoSQL Java
SpringBoot接入轻量级分布式日志框架GrayLog技术分享
在当今的软件开发环境中,日志管理扮演着至关重要的角色,尤其是在微服务架构下,分布式日志的统一收集、分析和展示成为了开发者和运维人员必须面对的问题。GrayLog作为一个轻量级的分布式日志框架,以其简洁、高效和易部署的特性,逐渐受到广大开发者的青睐。本文将详细介绍如何在SpringBoot项目中接入GrayLog,以实现日志的集中管理和分析。
326 1
|
5月前
|
存储 运维 安全
多云网络部署存在挑战,F5分布式云应用简化方案解读
多云网络部署存在挑战,F5分布式云应用简化方案解读
69 0