LeetCode题目99:图解中叙遍历、Morris遍历实现恢复二叉树搜索树【python】

简介: LeetCode题目99:图解中叙遍历、Morris遍历实现恢复二叉树搜索树【python】

作者介绍:10年大厂数据\经营分析经验,现任大厂数据部门负责人。

会一些的技术:数据分析、算法、SQL、大数据相关、python

欢迎加入社区:码上找工作

作者专栏每日更新:

LeetCode解锁1000题: 打怪升级之旅

python数据分析可视化:企业实战案例

python源码解读

程序员必备的数学知识与应用

备注说明:方便大家阅读,统一使用python,带必要注释,公众号 数据分析螺丝钉 一起打怪升级

题目描述

给你二叉搜索树的根节点 root,该树中的恰好两个节点的值被错误地交换。请在不改变其结构的情况下,恢复这棵树。

输入格式
  • root:二叉树的根节点。
输出格式
  • 不需要返回值,直接在原树上进行恢复。

示例

示例 1
输入: [1,3,null,null,2]
输出: [3,1,null,null,2]
解释: 3 和 1 被错误交换。
示例 2
输入: [3,1,4,null,null,2]
输出: [2,1,4,null,null,3]
解释: 2 和 3 被错误交换。

方法一:中序遍历和交换

解题步骤
  1. 中序遍历:使用中序遍历找到两个错误的节点。
  2. 节点交换:找到两个不符合中序递增顺序的节点后,交换它们的值。
完整的规范代码
class TreeNode:
    def __init__(self, val=0, left=None, right=None):
        self.val = val
        self.left = left
        self.right = right
def recoverTree(root):
    """
    使用中序遍历恢复二叉搜索树
    :param root: TreeNode, 二叉搜索树的根节点
    """
    stack = []
    x = y = prev = None
    while stack or root:
        while root:
            stack.append(root)
            root = root.left
        root = stack.pop()
        if prev and root.val < prev.val:
            y = root
            if not x:
                x = prev
            else:
                break
        prev = root
        root = root.right
    # 交换两个节点的值
    if x and y:
        x.val, y.val = y.val, x.val
# 示例调用
root = TreeNode(1, TreeNode(3, None, TreeNode(2)))
recoverTree(root)
算法分析
  • 时间复杂度:(O(n)),需要遍历所有节点。
  • 空间复杂度:(O(h)),其中 (h) 是树的高度,用于存储栈。
中序遍历的 ASCII 图解

假设我们有一个二叉树,其中两个节点值被错误交换,例如树结构为:

3
   / \
  1   4
     /
    2

中序遍历应为 [1, 3, 4, 2],但正确的排序应为 [1, 2, 3, 4],其中 4 和 2 被错误地交换。

开始中序遍历:
    访问节点 3
    |   去左 -> 访问节点 1
    |   |   打印节点 1
    |   |   返回节点 3
    |   打印节点 3
    |   去右 -> 访问节点 4
    |   |   去左 -> 访问节点 2
    |   |   |   打印节点 2
    |   |   |   返回节点 4
    |   |   打印节点 4
    |   |   结束

方法二:Morris 中序遍历

解题步骤
  1. Morris 遍历:这种遍历方式不需要额外的空间,通过修改树的结构实现。
  2. 找出并交换错误节点:在遍历过程中寻找顺序错误的节点,并在遍历结束后交换它们的值。
完整的规范代码
def recoverTree(root):
    x = y = prev = pred = None
    while root:
        if root.left:
            pred = root.left
            while pred.right and pred.right != root:
                pred = pred.right
            if not pred.right:
                pred.right = root
                root = root.left
            else:
                if prev and root.val < prev.val:
                    y = root
                    if not x:
                        x = prev
                prev = root
                pred.right = None
                root = root.right
        else:
            if prev and root.val < prev.val:
                y = root
                if not x:
                    x = prev
            prev = root
            root = root.right
    if x and y:
        x.val, y.val = y.val, x.val
# 示例调用
root = TreeNode(1, TreeNode(3, None, TreeNode(2)))
recoverTree(root)
算法分析
  • 时间复杂度:(O(n)),虽然是 Morris 遍历,每个节点最多被访问两次。
  • 空间复杂度:(O(1)),不使用额外空间,除非修改了树的结构。

不同算法的优劣势对比

特征 方法一:中序遍历 方法二:Morris 遍历
时间复杂度 (O(n)) (O(n))
空间复杂度 (O(h)) (O(1))
优势 易于理解和实现 不需要额外空间
劣势 空间复杂度较高 修改了树的结构
Morris 遍历的 ASCII 图解

使用同样的树结构进行 Morris 遍历,我们通过修改树的结构来避免使用额外的空间。

开始Morris遍历:
    访问节点 3
    |   左节点存在,找到前驱(节点 1)
    |   |   前驱的右节点为空,链接到当前节点
    |   |   去左
    |   访问节点 1
    |   |   前驱是节点 3,断开链接,打印节点 1
    |   |   返回节点 3,打印节点 3
    |   去右 -> 访问节点 4
    |   |   左节点存在,找到前驱(节点 2)
    |   |   |   前驱的右节点为空,链接到当前节点
    |   |   |   去左
    |   |   访问节点 2
    |   |   |   前驱是节点 4,断开链接,打印节点 2
    |   |   |   返回节点 4,打印节点 4
    |   |   结束

应用示例

这些方法可用于数据库中维护数据索引的完整性、修复由于错误操作或系统故障导致数据结构损坏的情况,或者在进行复杂的数据操作前验证数据的一致性。

欢迎关注微信公众号 数据分析螺丝钉


相关文章
|
1月前
|
存储 算法 数据可视化
【二叉树遍历入门:从中序遍历到层序与右视图】【LeetCode 热题100】94:二叉树的中序遍历、102:二叉树的层序遍历、199:二叉树的右视图(详细解析)(Go语言版)
本文详细解析了二叉树的三种经典遍历方式:中序遍历(94题)、层序遍历(102题)和右视图(199题)。通过递归与迭代实现中序遍历,深入理解深度优先搜索(DFS);借助队列完成层序遍历和右视图,掌握广度优先搜索(BFS)。文章对比DFS与BFS的思维方式,总结不同遍历的应用场景,为后续构造树结构奠定基础。
133 10
|
2月前
|
机器学习/深度学习 自然语言处理 TensorFlow
使用Python和DeepSeek进行联网搜索的实践指南
本文介绍如何使用Python和假设的高性能深度学习工具包DeepSeek进行联网搜索,并通过实际案例展示其应用过程。首先,准备环境并安装依赖库(如Python 3.x、pip、DeepSeek、requests和BeautifulSoup4)。接着,讲解了DeepSeek的功能及其在图像分类、实体识别等任务中的应用。通过联网搜索抓取数据并进行预处理后,使用TensorFlow和Keras构建和训练CNN模型。
302 3
|
6月前
|
Python
二分查找变种大赏!Python 中那些让你效率翻倍的搜索绝技!
二分查找是一种高效的搜索算法,适用于有序数组。其基本原理是通过不断比较中间元素来缩小搜索范围,从而快速找到目标值。常见的变种包括查找第一个等于目标值的元素、最后一个等于目标值的元素、第一个大于等于目标值的元素等。这些变种在实际应用中能够显著提高搜索效率,适用于各种复杂场景。
74 9
|
6月前
|
算法 数据处理 开发者
超越传统:Python二分查找的变种策略,让搜索效率再上新台阶!
本文介绍了二分查找及其几种Python实现的变种策略,包括经典二分查找、查找第一个等于给定值的元素、查找最后一个等于给定值的元素以及旋转有序数组的搜索。通过调整搜索条件和边界处理,这些变种策略能够适应更复杂的搜索场景,提升搜索效率和应用灵活性。
66 5
|
7月前
|
程序员 C语言
【C语言】LeetCode(力扣)上经典题目
【C语言】LeetCode(力扣)上经典题目
127 1
|
8月前
|
大数据 UED 开发者
实战演练:利用Python的Trie树优化搜索算法,性能飙升不是梦!
在数据密集型应用中,高效搜索算法至关重要。Trie树(前缀树/字典树)通过优化字符串处理和搜索效率成为理想选择。本文通过Python实战演示Trie树构建与应用,显著提升搜索性能。Trie树利用公共前缀减少查询时间,支持快速插入、删除和搜索。以下为简单示例代码,展示如何构建及使用Trie树进行搜索与前缀匹配,适用于自动补全、拼写检查等场景,助力提升应用性能与用户体验。
142 2
|
7月前
【LeetCode 37】106.从中序与后序遍历构造二叉树
【LeetCode 37】106.从中序与后序遍历构造二叉树
53 0
|
7月前
|
Java C++ Python
【面试宝典】深入Python高级:直戳痛点的题目演示(下)
【面试宝典】深入Python高级:直戳痛点的题目演示(下)
|
7月前
|
设计模式 Unix Python
【面试宝典】深入Python高级:直戳痛点的题目演示(上)
【面试宝典】深入Python高级:直戳痛点的题目演示(上)
|
9月前
|
安全 应用服务中间件 网络安全
Python 渗透测试:漏洞的批量搜索与利用.(GlassFish 任意文件读取)
Python 渗透测试:漏洞的批量搜索与利用.(GlassFish 任意文件读取)
117 11