掌握区间合并:解决实际问题的算法策略和应用案例【python LeetCode题目56】

简介: 掌握区间合并:解决实际问题的算法策略和应用案例【python LeetCode题目56】

作者介绍:10年大厂数据\经营分析经验,现任大厂数据部门负责人。

会一些的技术:数据分析、算法、SQL、大数据相关、python

欢迎加入社区:码上找工作

作者专栏每日更新:

LeetCode解锁1000题: 打怪升级之旅

python数据分析可视化:企业实战案例

题目描述

给出一个区间的集合,请合并所有重叠的区间。

输入格式
  • intervals:一个二维整数数组,每个子数组包含两个整数,表示一个区间的起始和结束位置。
输出格式
  • 返回一个二维整数数组,表示合并后的区间。

示例

示例 1
输入: intervals = [[1,3],[2,6],[8,10],[15,18]]
输出: [[1,6],[8,10],[15,18]]
解释: 区间 [1,3] 和 [2,6] 发生重叠,合并成 [1,6].
示例 2
输入: intervals = [[1,4],[4,5]]
输出: [[1,5]]
解释: 区间 [1,4] 和 [4,5] 可被视为重叠区间。

方法一:排序后合并

解题步骤
  1. 排序:先按每个区间的起始位置进行排序。
  2. 初始化:用一个新列表 merged 来存储最终合并后的区间。
  3. 合并区间:遍历排序后的区间列表,如果 merged 为空或者当前区间与 merged 中最后一个区间不重叠,直接添加到 merged;否则,将当前区间与 merged 中最后一个区间进行合并。
完整的规范代码
def merge(intervals):
    """
    使用排序后合并的方法合并区间
    :param intervals: List[List[int]], 输入的区间列表
    :return: List[List[int]], 合并后的区间列表
    """
    intervals.sort(key=lambda x: x[0])  # 按区间起点进行排序
    merged = []
    for interval in intervals:
        # 如果列表为空,或当前区间与上一区间不重叠,直接添加
        if not merged or merged[-1][1] < interval[0]:
            merged.append(interval)
        else:
            # 否则,有重叠,进行合并
            merged[-1][1] = max(merged[-1][1], interval[1])
    return merged
# 示例调用
print(merge([[1,3],[2,6],[8,10],[15,18]]))  # 输出: [[1,6],[8,10],[15,18]]
print(merge([[1,4],[4,5]]))  # 输出: [[1,5]]
算法分析
  • 时间复杂度:(O(n log n)),其中 n 是区间的数量。主要耗时操作是排序。
  • 空间复杂度:(O(log n)) 或 (O(n)),取决于所使用的排序算法。

方法二:扫描线算法

解题步骤
  1. 创建事件:对于每个区间 [a, b],创建两个事件:(a, ‘start’) 和 (b, ‘end’)。
  2. 排序事件:按照时间点排序这些事件,如果时间点相同,则 ‘end’ 事件在 ‘start’ 事件之前。
  3. 扫描处理:扫描排序后的事件列表,使用计数器记录开启的区间数量,根据区间的开启和结束更新合并区间的列表。
完整的规范代码
def merge(intervals):
    """
    使用扫描线算法合并区间
    :param intervals: List[List[int]], 输入的区间列表
    :return: List[List[int]], 合并后的区间列表
    """
    events = []  # 事件列表
    for start, end in intervals:
        events.append((start, 'start'))
        events.append((end, 'end'))
    # 事件排序,结束事件优先于开始事件
    events.sort(key=lambda x: (x[0], x[1] == 'start'))
    merged = []
    ongoing = 0  # 当前开启的区间数
    for time, typ in events:
        if typ == 'start':
            if ongoing == 0:  # 新的区间开始
                start = time
            ongoing += 1
        elif typ == 'end':
            ongoing -= 1
            if ongoing == 0:  # 区间结束
                merged.append([start, time])
    return merged
# 示例调用
print(merge([[1,3],[2,6],[8,10],[15,18]]))  # 输出: [[1,6],[8,10],[15,18]]
print(merge([[1,4],[4,5]]))  # 输出: [[1,5]]
算法分析
  • 时间复杂度:(O(n log n)),主要耗时在于事件排序。
  • 空间复杂度:(O(n)),用于存储事件。

方法三:动态规划

动态规划方法不是本问题的最优解法,而且实现复杂度高,故不推荐使用。在实际应用中,方法一和方法二已足够解决大多数情况。

不同算法的优劣势对比

特征 方法一: 排序后合并 方法二: 扫描线算法
时间复杂度 (O(n \log n)) (O(n \log n))
空间复杂度 (O(\log n)) 或 (O(n)) (O(n))
优势 简单直观,易于实现 处理复杂情况更高效,适用于区间边界频繁变动的场景
劣势 空间复杂度依赖排序算法 实现相对复杂,需要处理多种事件排序逻辑

确保会议室的使用时间不冲突。以下是如何将区间合并算法应用于会议室预订系统的详细解析:

应用场景:会议室预订系统

场景描述

  • 一个公司有多个会议室,员工需要预订会议室进行会议。
  • 员工通过系统输入会议的开始和结束时间,系统需要自动显示可用的会议室或者提示时间冲突。

技术实现

  • 当员工提交一次会议室预订请求时,系统将这个新的时间区间与已存在的预订记录进行比对。
  • 使用区间合并算法来确定是否存在时间上的重叠,从而判断是否可以接受新的预订。

代码示例

假设我们已经有一些预定记录,现在需要处理新的预定请求。

def merge(intervals):
    intervals.sort(key=lambda x: x[0])  # 按区间起点进行排序
    merged = []
    for interval in intervals:
        if not merged or merged[-1][1] < interval[0]:
            merged.append(interval)
        else:
            merged[-1][1] = max(merged[-1][1], interval[1])
    return merged
# 已存在的会议预订记录
existing_bookings = [[9, 12], [14, 17], [21, 23]]
# 新的会议请求
new_meeting = [13, 15]
# 检查新的会议是否可以安排
combined_bookings = existing_bookings + [new_meeting]
merged_bookings = merge(combined_bookings)
if len(merged_bookings) != len(existing_bookings) + 1:
    print("新会议请求与现有会议时间冲突,无法预订。")
else:
    print("新会议请求成功预订。")
    existing_bookings = merged_bookings  # 更新现有预订记录
print("当前会议室预订情况:", merged_bookings)

输出解析

  • 程序首先将新的会议请求加入到已有的会议记录中。
  • 通过 merge 函数处理合并后的区间。
  • 如果合并前后的记录数量不变,说明新会议未与现有会议重叠,预订成功;否则,表示时间冲突。
应用二:动态时间表的优化管理

场景描述

  • 在动态时间表管理,如交通工具的时刻表调整或电视节目的排版中,需要不断调整活动时间以优化整体使用效率或观看率。

技术实现

  • 利用区间合并算法可以实时调整和优化时间表,合并重叠的或连续的活动区间,减少空闲时间,增加资源使用效率。

代码示例

假设有一个初步的活动时间表,需要进行优化合并。

activities = [[10, 12], [11, 13], [12, 15], [17, 19]]
# 使用区间合并算法优化活动时间表
optimized_activities = merge(activities)
print("优化后的活动时间表:", optimized_activities)

输出解析

  • 此示例中,活动时间表通过合并重叠的时间区间来优化,减少了时间段的碎片化,提高了时间资源的利用率。

总结

通过上述应用示例,我们可以看到区间合并算法不仅限于理论问题,而是可以广泛应用于实际项目中,如会议室预订系统和时间表管理等,帮助开发者和组织有效地管理和优化时间资源。这种算法的实际应用突出了它在现代编程中的实用价值和广泛适用性。


欢迎关注微信公众号 数据分析螺丝钉

目录
打赏
0
3
3
0
68
分享
相关文章
解锁文件共享软件背后基于 Python 的二叉搜索树算法密码
文件共享软件在数字化时代扮演着连接全球用户、促进知识与数据交流的重要角色。二叉搜索树作为一种高效的数据结构,通过有序存储和快速检索文件,极大提升了文件共享平台的性能。它依据文件名或时间戳等关键属性排序,支持高效插入、删除和查找操作,显著优化用户体验。本文还展示了用Python实现的简单二叉搜索树代码,帮助理解其工作原理,并展望了该算法在分布式计算和机器学习领域的未来应用前景。
深度洞察内网监控电脑:基于Python的流量分析算法
在当今数字化环境中,内网监控电脑作为“守城卫士”,通过流量分析算法确保内网安全、稳定运行。基于Python的流量分析算法,利用`scapy`等工具捕获和解析数据包,提取关键信息,区分正常与异常流量。结合机器学习和可视化技术,进一步提升内网监控的精准性和效率,助力企业防范潜在威胁,保障业务顺畅。本文深入探讨了Python在内网监控中的应用,展示了其实战代码及未来发展方向。
【强化学习】基于深度强化学习的微能源网能量管理与优化策略研究【Python】
本项目基于深度Q网络(DQN)算法,通过学习预测负荷、可再生能源输出及分时电价等信息,实现微能源网的能量管理与优化。程序以能量总线模型为基础,结合强化学习理论,采用Python编写,注释清晰,复现效果佳。内容涵盖微能源网系统组成、Q学习算法原理及其实现,并提供训练奖励曲线、发电单元功率、电网交互功率和蓄电池调度等运行结果图表,便于对照文献学习与应用。
如何在Python下实现摄像头|屏幕|AI视觉算法数据的RTMP直播推送
本文详细讲解了在Python环境下使用大牛直播SDK实现RTMP推流的过程。从技术背景到代码实现,涵盖Python生态优势、AI视觉算法应用、RTMP稳定性及跨平台支持等内容。通过丰富功能如音频编码、视频编码、实时预览等,结合实际代码示例,为开发者提供完整指南。同时探讨C接口转换Python时的注意事项,包括数据类型映射、内存管理、回调函数等关键点。最终总结Python在RTMP推流与AI视觉算法结合中的重要性与前景,为行业应用带来便利与革新。
|
15天前
|
基于 Python 哈希表算法的员工上网管理策略研究
于当下数字化办公环境而言,员工上网管理已成为企业运营管理的关键环节。企业有必要对员工的网络访问行为予以监控,以此确保信息安全并提升工作效率。在处理员工上网管理相关数据时,适宜的数据结构与算法起着举足轻重的作用。本文将深入探究哈希表这一数据结构在员工上网管理场景中的应用,并借助 Python 代码示例展开详尽阐述。
37 3
Python下的毫秒级延迟RTSP|RTMP播放器技术探究和AI视觉算法对接
本文深入解析了基于Python实现的RTSP/RTMP播放器,探讨其代码结构、实现原理及优化策略。播放器通过大牛直播SDK提供的接口,支持低延迟播放,适用于实时监控、视频会议和智能分析等场景。文章详细介绍了播放控制、硬件解码、录像与截图功能,并分析了回调机制和UI设计。此外,还讨论了性能优化方法(如硬件加速、异步处理)和功能扩展(如音量调节、多格式支持)。针对AI视觉算法对接,文章提供了YUV/RGB数据处理示例,便于开发者在Python环境下进行算法集成。最终,播放器凭借低延迟、高兼容性和灵活扩展性,为实时交互场景提供了高效解决方案。
探秘文件共享服务之哈希表助力 Python 算法实现
在数字化时代,文件共享服务不可或缺。哈希表(散列表)通过键值对存储数据,利用哈希函数将键映射到特定位置,极大提升文件上传、下载和搜索效率。例如,在大型文件共享平台中,文件名等信息作为键,物理地址作为值存入哈希表,用户检索时快速定位文件,减少遍历时间。此外,哈希表还用于文件一致性校验,确保传输文件未被篡改。以Python代码示例展示基于哈希表的文件索引实现,模拟文件共享服务的文件索引构建与检索功能。哈希表及其分布式变体如一致性哈希算法,保障文件均匀分布和负载均衡,持续优化文件共享服务性能。
公司电脑网络监控场景下 Python 广度优先搜索算法的深度剖析
在数字化办公时代,公司电脑网络监控至关重要。广度优先搜索(BFS)算法在构建网络拓扑、检测安全威胁和优化资源分配方面发挥重要作用。通过Python代码示例展示其应用流程,助力企业提升网络安全与效率。未来,更多创新算法将融入该领域,保障企业数字化发展。
52 10
基于 Python 广度优先搜索算法的监控局域网电脑研究
随着局域网规模扩大,企业对高效监控计算机的需求增加。广度优先搜索(BFS)算法凭借其层次化遍历特性,在Python中可用于实现局域网内的计算机设备信息收集、网络连接状态监测及安全漏洞扫描,确保网络安全与稳定运行。通过合理选择数据结构与算法,BFS显著提升了监控效能,助力企业实现智能化的网络管理。
34 7
从集思录可转债数据探秘:Python与C++实现的移动平均算法应用
本文探讨了如何利用移动平均算法分析集思录提供的可转债数据,帮助投资者把握价格趋势。通过Python和C++两种编程语言实现简单移动平均(SMA),展示了数据处理的具体方法。Python代码借助`pandas`库轻松计算5日SMA,而C++代码则通过高效的数据处理展示了SMA的计算过程。集思录平台提供了详尽且及时的可转债数据,助力投资者结合算法与社区讨论,做出更明智的投资决策。掌握这些工具和技术,有助于在复杂多变的金融市场中挖掘更多价值。
68 12

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等