分布式事务大揭秘:使用MQ实现最终一致性

简介: 本文由小米分享,介绍分布式事务中的MQ最终一致性实现,以RocketMQ为例。RocketMQ的事务消息机制包括准备消息、本地事务执行、确认/回滚消息及事务状态检查四个步骤。这种机制通过消息队列协调多系统操作,确保数据最终一致。MQ最终一致性具有系统解耦、提高可用性和灵活事务管理等优点,广泛应用于分布式系统中。文章还讨论了RocketMQ的事务消息处理流程和失败情况下的处理策略,帮助读者理解如何在实际应用中解决分布式事务问题。



大家好,我是小米,一个热爱分享技术的29岁程序员,今天我们来聊聊分布式事务中的一种经典实现方式——MQ最终一致性。这是一个在互联网公司中广泛应用的技术方案,能够帮助我们在分布式系统中保证数据的一致性。特别是像阿里的RocketMQ,就支持消息事务。接下来,我会详细介绍其工作原理和实现步骤。

什么是分布式事务?

在单体应用中,事务的管理相对简单,可以通过数据库的事务机制来保证数据的一致性和完整性。然而,在分布式系统中,由于涉及到多个不同的服务和数据源,保证事务的一致性就变得复杂了。分布式事务的目标是确保在多个系统之间的操作,要么全部成功,要么全部失败,保持系统的一致性。

MQ最终一致性

MQ(Message Queue,消息队列)最终一致性是实现分布式事务的一种有效方式。它的核心思想是通过消息队列来协调各个子系统的操作,保证系统最终达到一致的状态。接下来我们具体看一下RocketMQ是如何支持消息事务的。

RocketMQ事务消息机制

RocketMQ的事务消息机制包含几个核心步骤:准备消息(prepared message)、本地事务执行、事务确认/回滚消息、事务状态检查。下面,我们通过一个具体的例子来详细说明这些步骤。

1. 订单系统发送Prepared消息到MQ

首先,A系统(订单系统)在开始一个分布式事务之前,会先发送一个prepared消息到MQ。如果这个prepared消息发送失败,那么整个操作将被取消,不再执行。

2. 本地事务的执行和确认/回滚消息发送

如果prepared消息发送成功,那么A系统会执行本地事务。例如,创建订单并写入数据库。事务执行成功后,A系统会发送确认消息(commit message)到MQ;如果事务执行失败,则发送回滚消息(rollback message)到MQ。

3. B系统(仓储系统)接收确认消息并执行本地事务

当MQ接收到A系统发送的确认消息后,B系统(仓储系统)会接收到这个确认消息,然后执行自己的本地事务。例如,减少库存。如果B系统的本地事务执行失败,会自动不断重试直到成功。如果重试次数达到一定阈值,会发送报警通知人工干预。

4. MQ轮询Prepared消息确认事务状态

RocketMQ会自动定时轮询所有prepared消息,通过回调接口确认事务执行状态。这是为了处理在prepared消息发送成功后,A系统挂掉或网络异常等情况导致的事务状态未知的问题。

5. B系统事务失败后的处理

如果B系统的事务执行失败,RocketMQ会自动重试,直到成功或达到最大重试次数。如果仍然失败,会发送报警通知,要求人工干预进行手工回滚和补偿操作。

MQ最终一致性的优势

通过上述步骤,我们可以看到MQ最终一致性的几个显著优势:

  • 解耦系统:消息队列在各个系统之间起到了解耦作用,使得系统之间可以独立演进。
  • 提高系统可用性:通过消息队列的重试机制,可以有效处理偶发的网络问题和系统故障,提高系统的整体可用性。
  • 灵活的事务管理:MQ最终一致性提供了灵活的事务管理方式,可以根据具体业务场景调整重试策略和补偿机制。

END

在分布式系统中,保证数据的一致性是一个重要且具有挑战性的任务。通过MQ最终一致性方案,我们可以有效地协调多个系统之间的事务操作,保证系统的最终一致性。RocketMQ作为一个成熟的消息队列中间件,为我们提供了强大的事务消息支持,使得这一方案在实际应用中得到了广泛的采用。

希望通过这篇文章,大家对分布式事务和MQ最终一致性有了更深入的了解。如果你在工作中也遇到了分布式事务的一些问题,欢迎留言交流,让我们共同探讨解决方案!

本文作者:小米,一个热爱技术分享的29岁程序员。如果你喜欢我的文章,欢迎关注我的微信公众号软件求生,获取更多技术干货!

相关实践学习
快速体验阿里云云消息队列RocketMQ版
本实验将带您快速体验使用云消息队列RocketMQ版Serverless系列实例进行获取接入点、创建Topic、创建订阅组、收发消息、查看消息轨迹和仪表盘。
消息队列 MNS 入门课程
1、消息队列MNS简介 本节课介绍消息队列的MNS的基础概念 2、消息队列MNS特性 本节课介绍消息队列的MNS的主要特性 3、MNS的最佳实践及场景应用 本节课介绍消息队列的MNS的最佳实践及场景应用案例 4、手把手系列:消息队列MNS实操讲 本节课介绍消息队列的MNS的实际操作演示 5、动手实验:基于MNS,0基础轻松构建 Web Client 本节课带您一起基于MNS,0基础轻松构建 Web Client
相关文章
|
1月前
|
数据采集 监控 NoSQL
优化分布式采集的数据同步:一致性、去重与冲突解决的那些坑与招
本文讲述了作者在房地产数据采集项目中遇到的分布式数据同步问题,通过实施一致性、去重和冲突解决的“三板斧”策略,成功解决了数据重复和同步延迟问题,提高了系统稳定性。核心在于时间戳哈希保证一致性,URL归一化和布隆过滤器确保去重,分布式锁解决写入冲突。
131 2
 优化分布式采集的数据同步:一致性、去重与冲突解决的那些坑与招
|
1月前
|
消息中间件 运维 监控
《聊聊分布式》BASE理论 分布式系统可用性与一致性的工程平衡艺术
BASE理论是对CAP定理中可用性与分区容错性的实践延伸,通过“基本可用、软状态、最终一致性”三大核心,解决分布式系统中ACID模型的性能瓶颈。它以业务为导向,在保证系统高可用的同时,合理放宽强一致性要求,并借助补偿机制、消息队列等技术实现数据最终一致,广泛应用于电商、社交、外卖等大规模互联网场景。
|
5月前
|
监控 算法 关系型数据库
分布式事务难题终结:Seata+DRDS全局事务一致性架构设计
在分布式系统中,CAP定理限制了可用性、一致性与分区容错的三者兼得,尤其在网络分区时需做出取舍。为应对这一挑战,最终一致性方案成为常见选择。以电商订单系统为例,微服务化后,原本的本地事务演变为跨数据库的分布式事务,暴露出全局锁失效、事务边界模糊及协议差异等问题。本文深入探讨了基于 Seata 与 DRDS 的分布式事务解决方案,涵盖 AT 模式实践、分片策略优化、典型问题处理、性能调优及高级特性实现,结合实际业务场景提供可落地的技术路径与架构设计原则。通过压测验证,该方案在事务延迟、TPS 及失败率等方面均取得显著优化效果。
330 61
|
11月前
|
存储 缓存 负载均衡
一致性哈希:解决分布式难题的神奇密钥
一致哈希是一种特殊的哈希算法,用于分布式系统中实现数据的高效、均衡分布。它通过将节点和数据映射到一个虚拟环上,确保在节点增减时只需重定位少量数据,从而提供良好的负载均衡、高扩展性和容错性。相比传统取模方法,一致性哈希能显著减少数据迁移成本,广泛应用于分布式缓存、存储、数据库及微服务架构中,有效提升系统的稳定性和性能。
648 1
|
消息中间件 网络协议 C#
C#使用Socket实现分布式事件总线,不依赖第三方MQ
`CodeWF.EventBus.Socket` 是一个轻量级的、基于Socket的分布式事件总线系统,旨在简化分布式架构中的事件通信。它允许进程之间通过发布/订阅模式进行通信,无需依赖外部消息队列服务。
C#使用Socket实现分布式事件总线,不依赖第三方MQ
|
消息中间件 缓存 算法
分布式系列第一弹:分布式一致性!
分布式系列第一弹:分布式一致性!
321 0
|
消息中间件 存储 NoSQL
MQ的顺序性保证:顺序队列、消息编号、分布式锁,一文全掌握!
【8月更文挑战第24天】消息队列(MQ)是分布式系统的关键组件,用于实现系统解耦、提升可扩展性和可用性。保证消息顺序性是其重要挑战之一。本文介绍三种常用策略:顺序队列、消息编号与分布式锁,通过示例展示如何确保消息按需排序。这些方法各有优势,可根据实际场景灵活选用。提供的Java示例有助于加深理解与实践应用。
920 2
|
算法 Java 关系型数据库
漫谈分布式数据复制和一致性!
漫谈分布式数据复制和一致性!
163 0
|
存储 算法 NoSQL
(七)漫谈分布式之一致性算法下篇:一文从根上儿理解大名鼎鼎的Raft共识算法!
Raft通过一致性检查,能在一定程度上保证集群的一致性,但无法保证所有情况下的一致性,毕竟分布式系统各种故障层出不穷,如何在有可能发生各类故障的分布式系统保证集群一致性,这才是Raft等一致性算法要真正解决的问题。
332 11

热门文章

最新文章