斯坦福新研究:RAG能帮助LLM更靠谱吗?

简介: 【6月更文挑战第8天】斯坦福大学研究表明,检索增强生成(RAG)技术可提升大型语言模型(LLM)的准确性,但在不正确或矛盾的检索信息下,LLM可能产生误导性答案。研究发现,提供准确检索信息时,LLM准确率可达94%,但错误信息可能导致LLM重复错误。LLM对信息的依赖和内部知识的冲突是关键问题,提示技术的选择也会影响其行为。研究强调使用RAG需谨慎,并指出需要进一步探索LLM在复杂情况下的表现。

近年来,大型语言模型(LLM)在自然语言处理领域取得了显著的进展,但它们也存在一些问题,如容易产生幻觉和无法提供最新的知识。为了解决这些问题,研究人员提出了一种名为检索增强生成(RAG)的技术,该技术通过提供相关的检索内容来增强LLM的能力。然而,RAG是否真的能帮助LLM更可靠地回答问题呢?

最近,斯坦福大学的研究人员进行了一项研究,旨在探讨RAG对LLM的影响。他们发现,在大多数情况下,提供正确的检索信息可以帮助LLM纠正错误并提供更准确的答案。然而,当检索到的信息不正确或与LLM的内部知识相矛盾时,LLM可能会受到误导,从而产生不准确的回答。

这项研究使用了GPT-4和其他一些LLM,并在不同的数据集上进行了测试,包括那些有参考文档和没有参考文档的数据集。结果显示,当提供正确的检索信息时,LLM的准确率可以达到94%。然而,当参考文档被故意修改以包含错误信息时,LLM更有可能重复这些错误,尤其是当它们的内部知识较弱时。

研究人员还发现,当修改后的信息与LLM的内部知识相差较大时,LLM更有可能坚持自己的知识,而不是接受错误的信息。这表明LLM具有一定的抵抗力,可以防止被误导,但这种抵抗力的强度取决于模型的内部知识和对信息的信心。

这项研究的结果强调了LLM内部知识和检索信息之间的紧张关系。虽然RAG可以帮助LLM提供更准确的答案,但如果检索到的信息不正确或与LLM的内部知识相矛盾,它也可能导致错误的回答。因此,研究人员建议在使用RAG时需要谨慎,并确保检索到的信息是准确和可靠的。

此外,研究人员还发现不同的提示技术(如严格遵循或松散遵循)可以影响LLM对RAG的偏好。严格提示技术可以迫使LLM更倾向于接受检索到的信息,而松散提示技术可以鼓励LLM在接受检索信息之前进行更多的推理。这表明提示技术的选择可以对LLM的行为产生重要影响,因此需要根据具体情况进行选择。

除了GPT-4,研究人员还使用了GPT-3.5和Mistral-7B等其他LLM进行了测试。虽然这些模型的性能较低,但它们也显示出与GPT-4相似的趋势,即当检索到的信息与内部知识相矛盾时,它们更有可能坚持自己的知识。

这项研究的局限性在于它只涵盖了有限的领域和数据集,并且没有考虑更复杂的情况,如多步骤逻辑、文档综合或其他高级推理。此外,研究人员使用的修改方法可能无法完全模拟真实世界中可能出现的错误类型,如拼写错误、歧义或缺失信息。

然而,这项研究仍然为我们提供了宝贵的见解,了解LLM如何处理不同可信度、准确性和一致性的信息。随着LLM在各个领域的广泛应用,如医学和法律,了解它们如何与信息交互以及如何受到外部因素的影响变得越来越重要。

https://arxiv.org/pdf/2404.10198

目录
相关文章
|
1天前
|
人工智能 算法 数据库
美团面试:LLM大模型存在哪些问题?RAG 优化有哪些方法?_
美团面试:LLM大模型存在哪些问题?RAG 优化有哪些方法?_
|
15天前
|
人工智能 开发框架 搜索推荐
27.4K Star!这个LLM应用宝库让你秒变AI全栈高手,RAG和AI Agent一网打尽!
想要快速入门LLM应用开发?想要了解最新的RAG和AI Agent技术?这个收获27.4K Star的开源项目集合了当下最热门的LLM应用案例,从简单的PDF对话到复杂的多智能体系统应该有尽有。无论你是AI开发新手还是经验丰富的工程师,这里都能找到适合你的项目!
|
6月前
|
人工智能 自然语言处理 数据库
基于RAG和LLM的水利知识问答系统研究
随着全球水资源紧张加剧,我国面临严峻的水资源管理挑战。《十四五规划》提出构建智慧水利体系,通过科技手段提升水情测报和智能调度能力。基于大语言模型(LLM)的水利智能问答系统,利用自然语言处理技术,提供高效、准确的水利信息查询和决策支持,助力水资源管理智能化。该系统通过RAG技术和Agent功能,实现了对水利知识的深度理解和精准回答,适用于水利知识科普、水务治理建议及灾害应急决策等多个场景,推动了水利行业的信息化和智能化发展。
|
2月前
|
物联网
LLM破局泛化诊断难题,MSSP刊登北航PHM实验室健康管理大模型交叉研究
北航PHM实验室提出了一种基于大型语言模型(LLM)的轴承故障诊断框架,结合传统诊断技术,解决了跨条件适应性、小样本学习和跨数据集泛化等问题。该框架通过信号特征量化方法提取振动数据的语义信息,并采用LoRA和QLoRA微调预训练模型,显著提升了诊断模型的泛化能力。实验结果显示,在跨数据集训练中,模型准确性提升了约10%,相关成果发表于《Mechanical Systems and Signal Processing》期刊。尽管存在计算资源需求高等挑战,该研究为旋转机械的高效维护提供了新思路。
82 2
|
2月前
|
人工智能 自然语言处理 数据可视化
Agentic Reasoning:推理界RAG诞生!牛津大学框架让LLM学会『组队打怪』:动态调用搜索/代码代理,复杂任务准确率飙升50%
Agentic Reasoning 是牛津大学推出的增强大型语言模型(LLM)推理能力的框架,通过整合外部工具提升多步骤推理、实时信息检索和复杂逻辑关系组织的能力。
130 1
|
2月前
|
人工智能 自然语言处理 算法
LLM为何频频翻车算术题?最新研究追踪单个神经元,大脑短路才是根源
最新研究揭示,大型语言模型(LLM)在解决算术问题时依赖于一组稀疏的重要神经元,这些神经元实现简单的启发式算法,而非稳健的算法或记忆训练数据。通过因果分析,研究人员发现这些启发式算法的组合是LLM产生正确算术答案的主要机制,并在训练早期就已形成。这为改进LLM的算术能力提供了新方向。论文地址:https://arxiv.org/abs/2410.21272
68 10
|
2月前
|
人工智能
RAG没有银弹!四级难度,最新综述覆盖数据集、解决方案,教你LLM+外部数据的正确使用姿势
在人工智能领域,大型语言模型(LLM)结合外部数据展现出强大能力,尤其检索增强生成(RAG)和微调技术备受关注。然而,不同专业领域的有效部署仍面临挑战,如准确检索数据、理解用户意图等。综述文章《Retrieval Augmented Generation (RAG) and Beyond》提出RAG任务分类方法,将用户查询分为四个级别,并探讨了外部数据集成的三种形式:上下文、小型模型和微调。文章提供了宝贵见解和实用指导,帮助更好地利用LLM潜力解决实际问题。论文链接:https://arxiv.org/abs/2409.14924
112 6
|
2月前
|
人工智能 机器人
D1net阅闻 | 谷歌DeepMind研究发现LLM新特性
D1net阅闻 | 谷歌DeepMind研究发现LLM新特性
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
AI自己长出了类似大脑的脑叶?新研究揭示LLM特征的惊人几何结构
近年来,大型语言模型(LLM)的内部运作机制备受关注。麻省理工学院的研究人员在论文《The Geometry of Concepts: Sparse Autoencoder Feature Structure》中,利用稀疏自编码器(SAE)分析LLM的激活空间,揭示了其丰富的几何结构。研究发现,特征在原子、大脑和星系三个尺度上展现出不同的结构,包括晶体结构、中尺度模块化结构和大尺度点云结构。这些发现不仅有助于理解LLM的工作原理,还可能对模型优化和其他领域产生重要影响。
122 25
|
5月前
|
自然语言处理 算法
RAG真能提升LLM推理能力?人大最新研究:数据有噪声,RAG性能不升反降
随着大型语言模型(LLM)在自然语言处理领域的广泛应用,检索增强生成(RAG)技术因能引入新知识和减少幻觉而受到关注。然而,RAG对LLM推理能力的实际提升效果仍存争议。中国人民大学的一项研究表明,RAG虽能辅助LLM推理,但在处理含噪信息和深度推理时面临挑战。为此,研究团队提出了DPrompt tuning方法,旨在解决噪声问题并提升RAG性能。
124 12

热门文章

最新文章