每日练习之——背包问题

简介: 每日练习之——背包问题

完全背包

题目描述

运行代码

#include<bits/stdc++.h>
#include<iostream>
using namespace std;
const int N=1e3+3;
int n,V;
int v[N],w[N],dp[N];
int main(){
    cin>>n>>V; 
    int t=1;
    while(t--){
    for(int i=1;i<=n;++i){
        cin>>v[i]>>w[i];
    }
    memset(dp,-0x3f,sizeof(dp));
    dp[0]=0;
    int Max=0;
    for(int i=1;i<=n;++i){
        for(int j=v[i];j<=V;++j){
            dp[j]=max(dp[j],dp[j-v[i]]+w[i]);
            Max=max(Max,dp[j]);
        }
    }
    cout<<(dp[V]>0?dp[V]:0)<<endl;
}
}

代码思路

  1. 头文件和命名空间:
  • 使用了#include<bits/stdc++.h>,这是一个常用的头文件,包含了C++标准库中的大部分内容,但这不是一个推荐的做法,因为它会增加编译时间和可能引入不必要的开销。更推荐按需引入所需的头文件,如#include<vector>#include<algorithm>等。
  • using namespace std;虽方便,但在大型项目中可能导致命名冲突,建议在具体地方使用std::前缀代替。
  1. 常量定义:const int N=1e3+3;定义了数组的最大长度,这是合理的,但如果明确知道背包的最大容量或物品数量,可以进一步精确此常量。
  2. 主循环意义不明:代码中的while(t--)循环只执行一次,且t的值没有定义和改变,这个循环是冗余的,可以直接去除。
  3. 动态规划核心逻辑:
  • 动态规划数组dp[N]初始化为负无穷大,表示未放入任何物品时的价值。
  • dp[j] = max(dp[j], dp[j-v[i]] + w[i])是动态规划转移方程,表示考虑第i件物品时,容量为j的背包能装入的最大价值。
  • 优化点在于直接在循环中跟踪最大价值Max,避免最后再遍历dp[]数组寻找最大值。
  1. 输出处理:cout<<(dp[V]>0?dp[V]:0)<<endl;判断如果背包满载时的最大价值大于0,则输出该值,否则输出0,处理了背包容量不足以装入任何物品的情况。

改进思路

  • 移除了无用的while(t--)循环。
  • 修改了动态规划数组的遍历顺序,从大到小遍历j,避免了重复计算,提高了效率。
  • 明确了头文件的引入,移除了#include<bits/stdc++.h>,虽然在这个简短代码中未直接体现,但在实践中是个好习惯。
  • 使用了<climits>头文件中的INT_MIN(或直接写成-0x3f3f3f3f)代替-0x3f来初始化,更符合常规做法,虽然在这个案例中直接初始化为0也足够,因为dp数组的初始状态本应为0。
目录
相关文章
|
6月前
|
存储 算法
动态规划(背包问题)
动态规划(背包问题)
|
7月前
|
算法 测试技术 C#
|
7月前
|
算法
动态规划—(背包问题)
动态规划—(背包问题)
|
7月前
|
消息中间件 Kubernetes NoSQL
动态规划- 背包问题总结(一)
动态规划- 背包问题总结(一)
|
存储 算法
动态规划之背包问题
动态规划之背包问题
102 0
|
机器学习/深度学习
动态规划-背包问题
动态规划-背包问题
【33. 0 1 背包问题】
背包问题 - 一共有N件物品,背包容量为V,物品有俩个属性,一个是体积一个是价值(类似在一个宝岛上,你有一个背包,它只能装满这个背包,小岛上有很多金子,各种体积的,而且每个金子纯度不一样,看最后怎么装才会使得背包中的金子价值最高) **四种背包问题** - 0 1 背包 每件物品最多只用一次, - 完全背包 每件物品有无线个 - 多重背包 每个物品不一样,每个物品最多有有S<sub>i</sub>个——朴素版和优化版 - 分组背包 有水果,汽车,人等,每一种里面最多只能选择一个
162 0
【33. 0 1 背包问题】
|
算法
背包问题(二)
复习acwing算法基础课的内容,本篇为讲解基础算法:动态规划——背包问题,关于时间复杂度:目前博主不太会计算,先鸽了,日后一定补上。
98 0
背包问题(二)

热门文章

最新文章