一:基本原理
NCC是一种基于统计学计算两组样本数据相关性的算法,其取值范围为[-1, 1]之间,而对图像来说,每个像素点都可以看出是RGB数值,这样整幅图像就可以看成是一个样本数据的集合,如果它有一个子集与另外一个样本数据相互匹配则它的ncc值为1,表示相关性很高,如果是-1则表示完全不相关,基于这个原理,实现图像基于模板匹配识别算法,其中第一步就是要归一化数据,数学公式如下:
二:实现步骤
(1) 获取模板像素并计算均值与标准方差、像素与均值diff数据样本
(2) 根据模板大小,在目标图像上从左到右,从上到下移动窗口,计
算每移动一个像素之后窗口内像素与模板像素的ncc值,与阈值比较,大于
阈值则记录位置
(3) 根据得到位置信息,使用红色矩形标记出模板匹配识别结果。
(4) UI显示结果
三:编程实现
基于JAVA语言完成了整个算法编程实现与演示,其中第一步的代码如下:
int tw = template.getWidth(); int th = template.getHeight(); int[] tpixels = new int[tw * th]; getRGB(template, 0, 0, tw, th, tpixels); for(int i=0; i<tpixels.length; i++) { tpixels[i] = (tpixels[i] >> 16) & 0xff; } double[] meansdev = getPixelsMeansAndDev(tpixels); double[] tDiff = calculateDiff(tpixels, meansdev[0]); int raidus_width = tw / 2; int raidus_height = th / 2;
第二步的实现代码如下:
int[] windowPixels = new int[tw * th]; Arrays.fill(windowPixels, 0); for (int row = 0; row < height; row++) { for (int col = 0; col < width; col++) { // calculate the means and dev for each window if(row < raidus_height || (row + raidus_height) >= height) continue; if(col < raidus_width || (col + raidus_width) >= width) continue; int wrow = 0; Arrays.fill(windowPixels, 0); for(int subrow = -raidus_height; subrow <= raidus_height; subrow++ ) { int wcol = 0; for(int subcol = -raidus_width; subcol <= raidus_width; subcol++ ) { if(wrow >= th || wcol >= tw) { continue; } windowPixels[wrow * tw + wcol] = getPixelValue(width, col + subcol, row + subrow, inPixels); wcol++; } wrow++; } // calculate the ncc double[] _meansDev = getPixelsMeansAndDev(windowPixels); double[] diff = calculateDiff(windowPixels, _meansDev[0]); double ncc = calculateNcc(tDiff, diff, _meansDev[1], meansdev[1]); if(ncc > threhold) { Point mpoint = new Point(); mpoint.x = col; mpoint.y = row; points.add(mpoint); } } }
第三步的实现代码如下:
// draw matched template on target image according position setRGB( dest, 0, 0, width, height, inPixels ); Graphics2D g2d = dest.createGraphics(); g2d.setPaint(Color.RED); g2d.setStroke(new BasicStroke(4)); for(Point p : points) { g2d.drawRect(p.x - raidus_width, p.y - raidus_height, tw, th); }
其中第二步用到的计算NCC的方法实现如下:
private double calculateNcc(double[] tDiff, double[] diff, double dev1, double dev2) { // TODO Auto-generated method stub double sum = 0.0d; double count = diff.length; for(int i=0; i<diff.length; i++) { sum += ((tDiff[i] * diff[i])/(dev1 * dev2)); } return (sum / count); }
UI部分完整源代码如下:
package com.gloomyfish.image.templae.match; import java.awt.BorderLayout; import java.awt.FlowLayout; import java.awt.Graphics; import java.awt.Graphics2D; import java.awt.event.ActionEvent; import java.awt.event.ActionListener; import java.awt.image.BufferedImage; import java.io.IOException; import javax.imageio.ImageIO; import javax.swing.JButton; import javax.swing.JComponent; import javax.swing.JFrame; import javax.swing.JPanel; public class DemoUI extends JComponent { /** * */ private static final long serialVersionUID = 1L; private BufferedImage targetImage; private BufferedImage template; public DemoUI() { super(); java.net.URL imageURL = this.getClass().getResource("words.png"); java.net.URL templateURL = this.getClass().getResource("template.png"); try { template = ImageIO.read(templateURL); targetImage = ImageIO.read(imageURL); } catch (IOException e) { e.printStackTrace(); } } public void setTarget(BufferedImage target) { this.targetImage = target; } @Override protected void paintComponent(Graphics g) { Graphics2D g2 = (Graphics2D) g; if(targetImage != null) { g2.drawImage(targetImage, 10, 10, targetImage.getWidth(), targetImage.getHeight(), null); } if(template != null) { g2.drawImage(template, 20+targetImage.getWidth(), 10, template.getWidth(), template.getHeight(), null); } } public static void main(String[] args) { JFrame f = new JFrame("模板匹配与识别"); JButton okBtn = new JButton("匹配"); final DemoUI ui = new DemoUI(); okBtn.addActionListener(new ActionListener() { @Override public void actionPerformed(ActionEvent e) { ui.process(); } }); JPanel btnPanel = new JPanel(); btnPanel.setLayout(new FlowLayout(FlowLayout.RIGHT)); btnPanel.add(okBtn); f.getContentPane().add(btnPanel, BorderLayout.SOUTH); f.getContentPane().add(ui, BorderLayout.CENTER); f.setSize(500, 500); f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); f.setVisible(true); } protected void process() { NccTemplateMatchAlg algo = new NccTemplateMatchAlg(template); targetImage = algo.filter(targetImage, null); this.repaint(); } }
四:程序运行效果如下
其中左边是目标图像、右边为模板图像
PS:博客从10月份开始每月都有多篇相关图像处理文章更新
欢迎大家继续关注