数据结构和算法学习记录——删除有序数组中的重复项、合并两个有序数组

简介: 数据结构和算法学习记录——删除有序数组中的重复项、合并两个有序数组

去重

删除有序数组中的重复项

题目描述

给你一个 升序排列 的数组 nums ,请你 原地 删除重复出现的元素,使每个元素 只出现一次 ,返回删除后数组的新长度。元素的 相对顺序 应该保持 一致 。

由于在某些语言中不能改变数组的长度,所以必须将结果放在数组nums的第一部分。更规范地说,如果在删除重复项之后有 k 个元素,那么 nums 的前 k 个元素应该保存最终结果。

将最终结果插入 nums 的前 k 个位置后返回 k 。

不要使用额外的空间,你必须在 原地 修改输入数组 并在使用 O(1) 额外空间的条件下完成。

判断标准

系统会用下面的代码来测试你的题解:int[] nums = [...]; // 输入数组 int[] expectedNums = [...]; // 长度正确的期望答案 int k =removeDuplicates(nums); // 调用 assert k == expectedNums.length; for (int i = 0; i < k; i++) { assert nums[i] == expectedNums[i]; }

如果所有断言都通过,那么您的题解将被 通过。

题目示例

示例 : 输入:nums = [0,0,1,1,1,2,2,3,3,4] 输出:5, nums = [0,1,2,3,4] 解释: 函数应该返回新的长度 5 , 并且原数组 nums 的前五个元素被修改为 0 , 1 , 2 , 3 , 4 。不需要考虑数组中超出新长度后面的元素。

题目思路

题目解法

int removeDuplicates(int* nums, int numsSize)
{
    if(numsSize == 0)
        return 0;
        int begin = 0,end = 1;
        int dst = 0;
        while(end < numsSize)
        {
            if(nums[begin] == nums[end])
                end++;
            else
            {
                nums[dst] = nums[begin];
                begin = end;
                end++;
                dst++;
            }
        }
        nums[dst] = nums[begin];
        dst++;
        return dst;
}

合并

合并两个有序数组

题目描述

给你两个按 非递减顺序 排列的整数数组 nums1 和 nums2,另有两个整数 m 和 n ,分别表示 nums1 和 nums2 中的元素数目。请你 合并 nums2 到 nums1 中,使合并后的数组同样按 非递减顺序 排列。

注意:最终,合并后数组不应由函数返回,而是存储在数组 nums1 中。为了应对这种情况,nums1 的初始长度为 m + n,其中前 m 个元素表示应合并的元素,后 n 个元素为 0 ,应忽略。nums2 的长度为 n 。

题目示例

示例 1:

输入:nums1 = [1,2,3,0,0,0], m = 3, nums2 = [2,5,6], n = 3 输出:[1,2,2,3,5,6] 解释:需要合并 [1,2,3] 和 [2,5,6] 。 合并结果是 [1,2,2,3,5,6] ,其中斜体加粗标注的为 nums1 中的元素。


示例 2:

输入:nums1 = [1], m = 1, nums2 = [], n = 0 输出:[1] 解释:需要合并 [1] 和 [] 。 合并结果是 [1] 。


示例 3:

输入:nums1 = [0], m = 0, nums2 = [1], n = 1 输出:[1] 解释:需要合并的数组是 [] 和 [1] 。 合并结果是 [1] 。 注意,因为 m = 0 ,所以 nums1 中没有元素。nums1 中仅存的 0 仅仅是为了确保合并结果可以顺利存放到 nums1 中。

题目思路

第一种情况

第二种情况

题目解法

void merge(int* nums1, int nums1Size, int m, int* nums2, int nums2Size, int n)
{
    int end = n + m - 1;
    int nums1End = m - 1;
    int nums2End = n - 1;
    while(nums1End >= 0 && nums2End >= 0)
    {
        if(nums1[nums1End] > nums2[nums2End])
        {
            nums1[end--] = nums1[nums1End--];
        }
        else
        {
            nums1[end--] = nums2[nums2End--];
        }
    }
    while(nums2End >= 0)
    {
        nums1[end--] = nums2[nums2End--];
    }
}
目录
相关文章
|
2月前
|
机器学习/深度学习 算法 数据挖掘
没发论文的注意啦!重磅更新!GWO-BP-AdaBoost预测!灰狼优化、人工神经网络与AdaBoost集成学习算法预测研究(Matlab代码实现)
没发论文的注意啦!重磅更新!GWO-BP-AdaBoost预测!灰狼优化、人工神经网络与AdaBoost集成学习算法预测研究(Matlab代码实现)
108 0
|
1月前
|
机器学习/深度学习 运维 算法
【微电网多目标优化调度】多目标学习者行为优化算法MOLPB求解微电网多目标优化调度研究(Matlab代码实现)
【微电网多目标优化调度】多目标学习者行为优化算法MOLPB求解微电网多目标优化调度研究(Matlab代码实现)
123 1
|
3月前
|
存储 监控 安全
企业上网监控系统中红黑树数据结构的 Python 算法实现与应用研究
企业上网监控系统需高效处理海量数据,传统数据结构存在性能瓶颈。红黑树通过自平衡机制,确保查找、插入、删除操作的时间复杂度稳定在 O(log n),适用于网络记录存储、设备信息维护及安全事件排序等场景。本文分析红黑树的理论基础、应用场景及 Python 实现,并探讨其在企业监控系统中的实践价值,提升系统性能与稳定性。
92 1
|
3月前
|
存储 监控 算法
基于跳表数据结构的企业局域网监控异常连接实时检测 C++ 算法研究
跳表(Skip List)是一种基于概率的数据结构,适用于企业局域网监控中海量连接记录的高效处理。其通过多层索引机制实现快速查找、插入和删除操作,时间复杂度为 $O(\log n)$,优于链表和平衡树。跳表在异常连接识别、黑名单管理和历史记录溯源等场景中表现出色,具备实现简单、支持范围查询等优势,是企业网络监控中动态数据管理的理想选择。
108 0
|
7月前
|
算法 数据可视化 开发者
为什么要学习数据结构与算法
今天,我向大家介绍一门非常重要的课程——《数据结构与算法》。这门课不仅是计算机学科的核心,更是每一位开发者从“小白”迈向“高手”的必经之路。
为什么要学习数据结构与算法
|
7月前
|
存储 算法 Java
算法系列之数据结构-二叉树
树是一种重要的非线性数据结构,广泛应用于各种算法和应用中。本文介绍了树的基本概念、常见类型(如二叉树、满二叉树、完全二叉树、平衡二叉树、B树等)及其在Java中的实现。通过递归方法实现了二叉树的前序、中序、后序和层次遍历,并展示了具体的代码示例和运行结果。掌握树结构有助于提高编程能力,优化算法设计。
215 10
 算法系列之数据结构-二叉树
|
7月前
|
算法 Java
算法系列之数据结构-Huffman树
Huffman树(哈夫曼树)又称最优二叉树,是一种带权路径长度最短的二叉树,常用于信息传输、数据压缩等方面。它的构造基于字符出现的频率,通过将频率较低的字符组合在一起,最终形成一棵树。在Huffman树中,每个叶节点代表一个字符,而每个字符的编码则是从根节点到叶节点的路径所对应的二进制序列。
173 3
 算法系列之数据结构-Huffman树
|
7月前
|
算法 Java
算法系列之数据结构-二叉搜索树
二叉查找树(Binary Search Tree,简称BST)是一种常用的数据结构,它能够高效地进行查找、插入和删除操作。二叉查找树的特点是,对于树中的每个节点,其左子树中的所有节点都小于该节点,而右子树中的所有节点都大于该节点。
233 22
|
8月前
|
存储 机器学习/深度学习 算法
C 408—《数据结构》算法题基础篇—链表(下)
408考研——《数据结构》算法题基础篇之链表(下)。
237 30
|
11月前
|
存储 算法
非递归实现后序遍历时,如何避免栈溢出?
后序遍历的递归实现和非递归实现各有优缺点,在实际应用中需要根据具体的问题需求、二叉树的特点以及性能和空间的限制等因素来选择合适的实现方式。
240 59

热门文章

最新文章