大数据算法的困境

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

2013年,美国有一起充满争议的案子,一个因为偷窃罪被判刑的男人把威斯康星法院告了。原因是他被判整整8年有期徒刑,不是因为他的罪行,也不是因为法官的判断,而是因为一个AI(人工智能)认为,他对社会具有“高危险性”。大数据时代,我们关注最多的是数据的安全和隐私,然而,数据加上算法所带来的问题,或许要比安全和隐私重要得多。

大数据让算法前所未有的强大

机器学习和深度神经网络,克服了算法设计中人的局限;只要有数据,只要数据中有统计规律,算法就能找到这些规律。人工智能技术近几年的火热,主要得益于机器学习、深度神经网络方面的技术突破,以及大数据技术的成熟。这些技术的突破使得从前很多被认为机器不可能解决的问题,变得可以解决。过去技术人员开发信息系统,需要将领域知识在头脑中转换为算法和程序。这些技术突破改变了这一现状,消除了对领域知识的依赖。算法可以通过机器学习的方法,从大量数据中自动提取出来,不再需要人来编写。这不仅减少了错误遗漏、降低了开发成本,并且可以随着数据的变化自动更新,而不会因为现实的变化而落伍。

算法存在的问题

算法没有价值判断,最终是人给计算结果加上了价值判断。但是一旦人们把算法给出的结果,用在处理社会关系上,这些结果就对相关的每个人产生了意义。

算法让一部分人掌握了过大的权力。虽然技术突破和大数据让算法开发变得容易,但是获取到足够的数据和计算资源,开发并利用算法,仍然是一件具有相当门槛的事情。能够掌握利用算法的仍限于少数人,这就使得这些少数人在社会生活中相对于其他人占有了极大的优势。为了社会公平,我们对拥有财产优势的人征收更多的税负,对掌握权力的人施加种种制衡,但是我们对拥有算法优势的人如何限制,仍然没有可行的思路。

对算法的迷信。技术突破让算法不需要人编写,虽然减轻了人开发算法的负担,但也让人更难以理解算法。大多数深度学习产生的算法都让人无法理解,但是由于大多数情况下算法是有效的,人们即使不理解,也乐于利用算法。这就产生了一个风险:没人知道算法的边界和失效条件,因此也就不能判断算法何时会出错。由于不理解,使用者往往倾向于忽视这种风险,于是形成了对算法的迷信。威斯康星州的判案系统就是这种情况。

相应的社会约束机制难以跟上。新技术只要有效,很快就会在社会生活中广泛应用,但是新技术往往深刻地改变了人们的生活方式,而与这些改变相适应的社会约束机制,只能在新技术的社会影响日益明确之后,才能逐渐建立起来。社会规范总是滞后于社会现实,在技术快速发展的当今,这种滞后造成的问题尤为显著。今天人工智能对人们日常生活的影响,恰如一百年前汽车普及造成的影响。当美国普通家庭开始拥有汽车很多年之后,道路信号、交通规则、驾照考试等设施和机制才逐渐完善,跟上技术变革的脚步。

在变化中探索秩序。人工智能技术仍在快速发展过程中,对社会生活的种种影响才刚刚开始显现。对此我们既不能因噎废食,阻碍技术发展,也不能放任自流,任由丛林法则支配,而是必须因应技术发展的潮流和社会现实的变化,不断探索调整,兴利除弊,让技术发展始终作为推动社会进步的动力。

本文转自d1net(转载)

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
相关文章
|
9月前
|
机器学习/深度学习 人工智能 自然语言处理
Baichuan-Omni-1.5:百川智能开源全模态理解与生成模型,支持文本、图像、音频和视频的多模态输入和输出
Baichuan-Omni-1.5 是百川智能开源的全模态理解模型,支持文本、图像、音频和视频的多模态输入和输出,显著提升多模态交互体验。
602 22
Baichuan-Omni-1.5:百川智能开源全模态理解与生成模型,支持文本、图像、音频和视频的多模态输入和输出
|
9月前
|
传感器 机器学习/深度学习 人工智能
智能电网巡检与传感器数据AI自动分析
智能电网设备巡检与传感器数据分析利用AI技术实现自动化分析和预警。通过信息抽取、OCR技术和机器学习,系统可高效处理巡检报告和实时数据,生成精准报告并提供故障预判和早期识别。AI系统24小时监控设备状态,实时发出异常警报,确保设备正常运行,提升运维效率和可靠性。
350 6
|
11月前
|
算法 网络协议 数据挖掘
阿里云通用算力型U1实例性能、适用场景、与经济型e区别、收费标准参考
在阿里云目前的活动中,通用算力型u1实例是一款价格相对较低且性价比较高的实例规格,通用算力型Universal实例(U实例)能提供均衡的计算、内存和网络资源,支持多种处理器和多种处理器内存配比。该类型实例依托阿里云资源池化技术和智能调度算法进行动态资源管理,为您的应用提供持续的算力保障、稳定性保障、供应及弹性保障,可以满足大多数场景下的应用需求,是一款具有高性价比的企业级实例。本文为大家介绍通用算力型U1实例的性能、适用场景、收费标准,以及和经济型e实例的区别,以供参考。
|
人工智能 自动驾驶 算法
AIoT(人工智能物联网)技术的发展前景
【8月更文挑战第1天】AIoT技术作为人工智能与物联网的深度融合产物,正展现出广阔的发展前景。随着技术的不断进步和市场需求的持续增长,AIoT技术将在更多领域和场景发挥重要作用,推动社会向更加智能化、高效化的方向发展。
|
缓存 小程序
【微信小程序-原生开发】启动时自动升级更新到最新版本
【微信小程序-原生开发】启动时自动升级更新到最新版本
311 0
|
传感器 自动驾驶 安全
深入探讨自动驾驶感知技术:实现无人驾驶的关键
深入探讨自动驾驶感知技术:实现无人驾驶的关键
452 5
|
数据采集 存储 运维
基于数据全生命周期的数据资产价值评估方法及应用
数据资产价值评估是现代数据资产管理和运营以及数据流通的基础。基于数据全生命周期理论,从第一性原则出发,通过评估单张数据资产表的成本、数据管理以及数据应用价值,实现对单张数据资产表的系统性评估。利用数据仓库和图算法等技术,以层为单位,每层分摊,血缘路径继承,精确计算得到单张数据资产表的成本价值;然后利用层次分析法得到数据资产非经济因素权重,进而得到数据资产阶梯价值;最后通过实例分析验证了新方法的合理性和可行性。
|
机器学习/深度学习 Apache C++
MXNet简介
轻量级,便携式,灵活的分布式/移动深度学习,具有动态,突变感知的数据流 Dep 调度程序; 适用于Python,R,Julia,Scala,Go,Javascript等,详情请参考:https://mxnet.apache.org GitHub地址:https://github.com/apache/incubator-mxnet Apache MXNet(孵化)是一个深度学习框架,旨在提高效率和灵活性。
2574 0
|
机器学习/深度学习
lstm LSTM的天气预测 时间序列预测 完整代码+数据 毕业设计 可直接运行
lstm LSTM的天气预测 时间序列预测 完整代码+数据 毕业设计 可直接运行
388 0
|
Java 中间件 Go
Nacos 1.1.0发布,支持灰度配置和地址服务器模式
Nacos 是阿里巴巴开源的配置中心和服务发现产品,开源距今已经超过一年的时间。本次1.1.0的发布,带来了许多重量级的特性更新,包括灰度配置等社区呼声很高的特性,下面会介绍1.1.0版本发布的新特性和每个特性的使用方式。
10946 100