Python采集数据处理:利用Pandas进行组排序和筛选

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
实时计算 Flink 版,5000CU*H 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
简介: 使用Python的Pandas库,结合亿牛云代理和多线程技术,提升网络爬虫数据处理效率。通过代理IP避免封锁,多线程并发采集,示例代码展示数据分组、排序、筛选及代理IP配置和线程管理。

亿牛云代理.png

概述

在现代数据处理和分析中,网络爬虫技术变得越来越重要。通过网络爬虫,我们可以自动化地从网页上收集大量的数据。然而,如何高效地处理和筛选这些数据是一个关键问题。本文将介绍如何使用Python的Pandas库对采集到的数据进行组排序和筛选,并结合代理IP技术和多线程技术,提高数据采集效率。本文的示例将使用爬虫代理服务。

细节

1. 数据采集和处理概述

网络爬虫用于从网站上自动收集数据。采集到的数据往往是非结构化的,使用Pandas库可以帮助我们将这些数据转换为结构化的数据格式(如DataFrame),并进行各种数据处理操作。我们将演示如何使用Pandas对数据进行分组、排序和筛选。

2. 使用代理IP技术

网络爬虫在大量请求网站时可能会被网站封锁。为了避免这种情况,我们可以使用代理IP技术,通过多个IP地址发送请求,从而提高爬虫的稳定性。亿牛云爬虫代理提供了方便的代理IP服务,我们将使用他们的服务进行示例。

3. 实现多线程技术

为了提高数据采集的效率,我们可以使用多线程技术同时进行多个数据采集任务。Python的threading模块可以帮助我们轻松实现多线程。

实现代码

以下是一个完整的Python示例,展示如何使用Pandas处理数据,并结合代理IP和多线程技术进行数据采集:

import pandas as pd
import requests
import threading
from queue import Queue

# 代理IP配置(亿牛云爬虫代理服务)
proxy_host = "proxy.16yun.cn"
proxy_port = "12345"
proxy_user = "your_username"
proxy_pass = "your_password"
proxies = {
   
   
    "http": f"http://{proxy_user}:{proxy_pass}@{proxy_host}:{proxy_port}",
    "https": f"http://{proxy_user}:{proxy_pass}@{proxy_host}:{proxy_port}",
}

# 多线程队列
url_queue = Queue()

# 待采集的URL列表
urls = [
    "http://example.com/data1",
    "http://example.com/data2",
    "http://example.com/data3",
    # 添加更多URL
]

# 将URL加入队列
for url in urls:
    url_queue.put(url)

# 爬虫函数
def fetch_data():
    while not url_queue.empty():
        url = url_queue.get()
        try:
            response = requests.get(url, proxies=proxies)
            if response.status_code == 200:
                data = response.json()  # 假设返回数据为JSON格式
                process_data(data)
            else:
                print(f"Failed to fetch {url}: {response.status_code}")
        except Exception as e:
            print(f"Error fetching {url}: {str(e)}")
        url_queue.task_done()

# 数据处理函数
def process_data(data):
    df = pd.DataFrame(data)
    # 数据分组并排序
    grouped = df.groupby("category")  # 假设有一个'category'列
    sorted_groups = grouped.size().sort_values(ascending=False)
    # 筛选出较大的组
    filtered_groups = sorted_groups[sorted_groups > 10]
    print(filtered_groups)

# 创建和启动线程
threads = []
for i in range(5):  # 创建5个线程
    thread = threading.Thread(target=fetch_data)
    thread.start()
    threads.append(thread)

# 等待所有线程完成
for thread in threads:
    thread.join()

url_queue.join()

print("Data fetching and processing complete.")

代码解释

  1. 代理IP配置: 配置了亿牛云爬虫代理的域名、端口、用户名和密码,并设置了proxies字典。
  2. 多线程队列: 使用Queue模块创建一个线程安全的队列,并将待采集的URL加入队列。
  3. 爬虫函数: fetch_data函数从队列中获取URL,使用代理IP发送请求,获取数据后调用process_data函数进行处理。
  4. 数据处理函数: process_data函数将获取的数据转换为Pandas DataFrame,按“category”列进行分组,排序后筛选出较大的组。
  5. 多线程实现: 创建并启动5个线程,调用fetch_data函数进行数据采集,并等待所有线程完成任务。

总结

通过本文的示例,我们展示了如何使用Pandas进行数据的分组排序和筛选,并结合代理IP和多线程技术提高数据采集的效率。希望本文对您在数据采集和处理方面有所帮助。如果您有任何问题或建议,欢迎交流讨论。

相关文章
|
23天前
|
测试技术 数据处理 Python
Python列表推导式:简洁高效的数据处理利器
Python列表推导式:简洁高效的数据处理利器
142 80
|
4月前
|
机器学习/深度学习 算法 Python
机器学习特征筛选:向后淘汰法原理与Python实现
向后淘汰法(Backward Elimination)是机器学习中一种重要的特征选择技术,通过系统性地移除对模型贡献较小的特征,以提高模型性能和可解释性。该方法从完整特征集出发,逐步剔除不重要的特征,最终保留最具影响力的变量子集。其优势包括提升模型简洁性和性能,减少过拟合,降低计算复杂度。然而,该方法在高维特征空间中计算成本较高,且可能陷入局部最优解。适用于线性回归、逻辑回归等统计学习模型。
176 7
|
2月前
|
数据采集 自然语言处理 Java
Playwright 多语言一体化——Python/Java/.NET 全栈采集实战
本文以反面教材形式,剖析了在使用 Playwright 爬取懂车帝车友圈问答数据时常见的配置错误(如未设置代理、Cookie 和 User-Agent),并提供了 Python、Java 和 .NET 三种语言的修复代码示例。通过错误示例 → 问题剖析 → 修复过程 → 总结教训的完整流程,帮助读者掌握如何正确配置爬虫代理及其它必要参数,避免 IP 封禁和反爬检测,实现高效数据采集与分析。
112 3
Playwright 多语言一体化——Python/Java/.NET 全栈采集实战
|
2月前
|
数据采集 运维 API
把Postman调试脚本秒变Python采集代码的三大技巧
本文介绍了如何借助 Postman 调试工具快速生成 Python 爬虫代码,并结合爬虫代理实现高效数据采集。文章通过“跨界混搭”结构,先讲解 Postman 的 API 调试功能,再映射到 Python 爬虫技术,重点分享三大技巧:利用 Postman 生成请求骨架、通过 Session 管理 Cookie 和 User-Agent,以及集成代理 IP 提升稳定性。以票务信息采集为例,展示完整实现流程,探讨其在抗封锁、团队协作等方面的价值,帮助开发者快速构建生产级爬虫代码。
108 1
把Postman调试脚本秒变Python采集代码的三大技巧
|
23天前
|
数据采集 存储 监控
抖音直播间采集提取工具,直播间匿名截流获客软件,Python开发【仅供学习】
这是一套基于Python开发的抖音直播间数据采集与分析系统,包含观众信息获取、弹幕监控及数据存储等功能。代码采用requests、websockets和sqlite3等...
|
3月前
|
数据采集 自然语言处理 JavaScript
Playwright多语言生态:跨Python/Java/.NET的统一采集方案
随着数据采集需求的增加,传统爬虫工具如Selenium、Jsoup等因语言割裂、JS渲染困难及代理兼容性差等问题,难以满足现代网站抓取需求。微软推出的Playwright框架,凭借多语言支持(Python/Java/.NET/Node.js)、统一API接口和优异的JS兼容性,解决了跨语言协作、动态页面解析和身份伪装等痛点。其性能优于Selenium与Puppeteer,在学术数据库(如Scopus)抓取中表现出色。行业应用广泛,涵盖高校科研、大型数据公司及AI初创团队,助力构建高效稳定的爬虫系统。
140 2
Playwright多语言生态:跨Python/Java/.NET的统一采集方案
|
4月前
|
数据采集 XML 存储
Python爬虫实战:一键采集电商数据,掌握市场动态!
这个爬虫还挺实用,不光能爬电商数据,改改解析规则,啥数据都能爬。写爬虫最重要的是要有耐心,遇到问题别着急,慢慢调试就成。代码写好了,运行起来那叫一个爽,分分钟几千条数据到手。
|
5月前
|
缓存 数据可视化 BI
Pandas高级数据处理:数据仪表板制作
在数据分析中,面对庞大、多维度的数据集(如销售记录、用户行为日志),直接查看原始数据难以快速抓住重点。传统展示方式(如Excel表格)缺乏交互性和动态性,影响决策效率。为此,我们利用Python的Pandas库构建数据仪表板,具备数据聚合筛选、可视化图表生成和性能优化功能,帮助业务人员直观分析不同品类商品销量分布、省份销售额排名及日均订单量变化趋势,提升数据洞察力与决策效率。
83 12
|
5月前
|
数据可视化 数据挖掘 数据处理
Pandas高级数据处理:数据可视化进阶
Pandas是数据分析的强大工具,能高效处理数据并与Matplotlib、Seaborn等库集成,实现数据可视化。本文介绍Pandas在绘制基础图表(如折线图)和进阶图表(如分组柱状图、热力图)时的常见问题及解决方案,涵盖数据准备、报错处理、图表优化等内容,并通过代码案例详细解释,帮助读者掌握数据可视化的技巧。
114 13

热门文章

最新文章

推荐镜像

更多