【数据结构】归并排序的非递归写法和计数排序

简介: 【数据结构】归并排序的非递归写法和计数排序

学习目标:

      我们大家应该都了解归并排序,而且可以很容易地将归并排序的递归形式写出,但是在面试或其他情况下,可能会考察我们非递归的写法,在这一篇博客中,我们会记录到如何写出归并排序非递归的写法,以及另一种排序方法:计数排序。

学习内容:

通过上面的学习目标,我们可以列出要学习的内容:

  1. 归并排序的非递归写法
  2. 计数排序的原理和代码写法

一、归并排序的非递归写法

1.1 归并排序(稳定排序)的复习

      归并排序利用分治的思想,将一个数组划分为两个有序的部分,然后在合并成一个有序的数组,利用递归的思想,但是,在一个要排序的数组中,不可能只分割一次就将数组分为两个有序的部分,我们要一直递归地分,直到一个区间中只剩下一个数时,就是有序的。类似于下图所示:

代码如下:

void mergesort(int a[], int left, int right)
{
  if (left >= right)
    return;
 
  int mid = (left + right) >> 1;
  mergesort(a, left, mid);
  mergesort(a, mid + 1, right);
 
  int l = left, r = mid + 1, cnt = left;
  while (l <= mid && r <= right)
  {
    if (a[l] < a[r])
    {
      tmp[cnt++] = a[l++];
    }
    else
    {
      tmp[cnt++] = a[r++];
    }
  }
  while (l <= mid)
  {
    tmp[cnt++] = a[l++];
  }
  while (r <= right)
  {
    tmp[cnt++] = a[r++];
  }
  for (int i = left; i <= right; i++)
  {
    a[i] = tmp[i];
  }
}

1.2 应该用什么数据结构来实现非递归写法呢?

      在快速排序中,我们使用栈来模拟非递归的排序,因为在递归的过程中,编译器会调用栈空间来实现递归的过程,但是在用栈来模拟快速排序的非递归的时候,我们可以发现,我们自己利用栈来实现的快速排序是不能回溯的,所以并不是真正意义上的递归过程。

      而在归并排序的过程中,我们可以发现我们只有在递归完成之后,在进行比较和排序,如果我们使用栈来模拟的话,是没有回溯的过程的,所以利用栈来模拟的话,我们只能将数组分割开,而不能将有序数组进行合并,因此,我们不能使用栈来模拟实现归并排序的非递归写法。

      那我们应该用什么来模拟实现归并排序的非递归写法呢?在之前,我们会写一个斐波那契数列,我们是利用递归来写的,但是,利用递归的斐波那契数列算不了很大的数字,我们可以使用循环或者是记忆化搜索来优化算法,因为记忆化搜索是涉及动态规划,我们之后在来细说。

      循环就是我们来解决归并排序非递归写法的思路。我们可以先通过斐波那契数列的优化来了解一下循环是如何进行的。因为斐波那契数列的递归过程是从后往前推的,但是我们已经知道了前两个数是多少,而递归过程是通过回溯来知道每一位对应的数是多少。而归并排序也是从后面往前推的,所以我们可以使用循环来实现。

1.3 循环实现非递归的过程

      我们可以先来两个区间两个区间来合并,然后将要合并的区间大小倍增。要注意边界问题,代码去下:

void merge(int a[], int left, int mid, int right)
{// 合并过程就不介绍了
  int l = left, r = mid + 1, cnt = left;
  while (l <= mid && r <= right)
  {
    if (a[l] <= a[r])
    {
      tmp[cnt++] = a[l++];
    }
    else
    {
      tmp[cnt++] = a[r++];
    }
  }
  while (l <= mid)
  {
    tmp[cnt++] = a[l++];
  }
  while (r <= right)
  {
    tmp[cnt++] = a[r++];
  }
  for (int i = left; i <= right; i++)
  {
    a[i] = tmp[i];
  }
}
 
void sortNonR(int a[], int left, int right)
{
  int n = right - left + 1;
  int l = 0, m = 0, r = 0;
  for (int gap = 1; gap < n; gap *= 2)
  {
    l = 0;
    while (l < n) // 注意边界问题
    {
      m = l + gap - 1;
      if (m + 1>= n) // 如果第二个区间的左边界超过了所给数组的下标,我们可以break
        break;
      r = min(l + (gap * 2) - 1, n - 1);
      merge(a, l, m, r);
      l = r + 1;
    }
  }
}

二、归并排序的另一个用途(外排序)

      像我们之前学习过的排序算法,可以按照排序算法能够排序在哪里存放的数据来划分为:内排序和外排序。而归并排序是唯一一个外排序的算法,归并排序既可以内排序,也可以外排序。换句人话:归并排序既可以排序内存中的数据,也可以排序硬盘中的数据。所以归并排序有一个非常大的用途,就是排序超级多的数据(存储在硬盘中)。

      我们可以先将1G的数据输入到内存中排序,然后再讲文件按照1G的大小分割,然后进行归并即可。这里的思想是:我们在归并时,不一定非要是一个数字,可以是其他单位。

三、 计数排序的原理和缺陷(非比较排序)

      计数排序,顾名思义就是将数字进行统计,一个数字在数组中出现了多少次。然后按顺序进行输出即可。看起来还是比较简单的,但是这个排序不常用,之后在说缺点。

3.1 计数排序的原理

      这个排序很像哈希的思想,就是利用额外的空间来统计每一个数字出现的个数。我们可以使用数组,其范围是最大的数字的大小,其优点就是效率极高。代码如下:

// 非优化版本
void Countsort(int a[], int n)
{
  int max = 0;
  for (int i = 0; i < n; i++)
  {
    if (max < a[i])
      max = a[i];
  }// 统计出最大值
  int* tmp = (int*)malloc(sizeof(int) * max + 1);
  for (int i = 0; i < n; i++)
    tmp[a[i]]++;
  int cnt = 0;
  for (int i = 0; i <= max; i++)
    while (tmp[i]--)
      a[cnt++] = i;
}

3.2 计数排序的缺陷

  1. 不适合分散的数据,更适合于集中的数据
  2. 不适合浮点数,字符串,结构体数据排序,只适合整数
  3. 不适合数据过大的整数排序

3.3 代码优化

      根据缺陷,我们可以将要排序的数组的最小值和最大值找出,然后根据最大值和最小值来确定数组的大小。这样我们即可以排序正数,也可以排序负数。优化代码如下:

void Countsort(int* a, int n)
{
  int min = 0, max = 0;
  for (int i = 0; i < n; i++)
  {
    if (min > a[i])
      min = a[i];
    if (max < a[i])
      max = a[i];
  }// 统计出最大,最小值
  int range = max - min + 1;
  int* tmp = (int*)calloc(range, sizeof(int));
  for (int i = 0; i < n; i++)
  {
    tmp[a[i] - min]++;
  }
  int cnt = 0;
  for (int i = 0; i < range; i++)
  {
    while (tmp[i] --)
    {
      a[cnt++] = i + min;
    }
  }
}
相关文章
|
存储 算法
非递归实现后序遍历时,如何避免栈溢出?
后序遍历的递归实现和非递归实现各有优缺点,在实际应用中需要根据具体的问题需求、二叉树的特点以及性能和空间的限制等因素来选择合适的实现方式。
313 59
|
存储 搜索推荐 算法
【初阶数据结构篇】归并排序和计数排序(总结篇)
归并排序(MERGE-SORT)是建⽴在归并操作上的⼀种有效的排序算法,该算法是采⽤分治法(Divide andConquer)的⼀个⾮常典型的应⽤。
178 0
|
11月前
|
搜索推荐 C语言
数据结构(C语言)之对归并排序的介绍与理解
归并排序是一种基于分治策略的排序算法,通过递归将数组不断分割为子数组,直到每个子数组仅剩一个元素,再逐步合并这些有序的子数组以得到最终的有序数组。递归版本中,每次分割区间为[left, mid]和[mid+1, right],确保每两个区间内数据有序后进行合并。非递归版本则通过逐步增加gap值(初始为1),先对单个元素排序,再逐步扩大到更大的区间进行合并,直至整个数组有序。归并排序的时间复杂度为O(n*logn),空间复杂度为O(n),且具有稳定性,适用于普通排序及大文件排序场景。
|
11月前
|
存储 人工智能 算法
【C++数据结构——内排序】二路归并排序(头歌实践教学平台习题)【合集】
本关任务是实现二路归并算法,即将两个有序数组合并为一个有序数组。主要内容包括: - **任务描述**:实现二路归并算法。 - **相关知识**: - 二路归并算法的基本概念。 - 算法步骤:通过比较两个有序数组的元素,依次将较小的元素放入新数组中。 - 代码示例(以 C++ 为例)。 - 时间复杂度为 O(m+n),空间复杂度为 O(m+n)。 - **测试说明**:平台会对你编写的代码进行测试,提供输入和输出示例。 - **通关代码**:提供了完整的 C++ 实现代码。 - **测试结果**:展示代码运行后的排序结果。 开始你的任务吧,祝你成功!
390 10
|
算法 搜索推荐 Shell
数据结构与算法学习十二:希尔排序、快速排序(递归、好理解)、归并排序(递归、难理解)
这篇文章介绍了希尔排序、快速排序和归并排序三种排序算法的基本概念、实现思路、代码实现及其测试结果。
471 1
|
存储 搜索推荐 算法
【用Java学习数据结构系列】七大排序要悄咪咪的学(直接插入,希尔,归并,选择,堆排,冒泡,快排)以及计数排序(非比较排序)
【用Java学习数据结构系列】七大排序要悄咪咪的学(直接插入,希尔,归并,选择,堆排,冒泡,快排)以及计数排序(非比较排序)
170 1
【初阶数据结构】打破递归束缚:掌握非递归版快速排序与归并排序
【初阶数据结构】打破递归束缚:掌握非递归版快速排序与归并排序
166 4
|
算法
蓝桥杯宝藏排序 | 数据结构 | 快速排序 归并排序
蓝桥杯宝藏排序 | 数据结构 | 快速排序 归并排序
|
6月前
|
编译器 C语言 C++
栈区的非法访问导致的死循环(x64)
这段内容主要分析了一段C语言代码在VS2022中形成死循环的原因,涉及栈区内存布局和数组越界问题。代码中`arr[15]`越界访问,修改了变量`i`的值,导致`for`循环条件始终为真,形成死循环。原因是VS2022栈区从低地址到高地址分配内存,`arr`数组与`i`相邻,`arr[15]`恰好覆盖`i`的地址。而在VS2019中,栈区先分配高地址再分配低地址,因此相同代码表现不同。这说明编译器对栈区内存分配顺序的实现差异会导致程序行为不一致,需避免数组越界以确保代码健壮性。
144 0
栈区的非法访问导致的死循环(x64)
232.用栈实现队列,225. 用队列实现栈
在232题中,通过两个栈(`stIn`和`stOut`)模拟队列的先入先出(FIFO)行为。`push`操作将元素压入`stIn`,`pop`和`peek`操作则通过将`stIn`的元素转移到`stOut`来实现队列的顺序访问。 225题则是利用单个队列(`que`)模拟栈的后入先出(LIFO)特性。通过多次调整队列头部元素的位置,确保弹出顺序符合栈的要求。`top`操作直接返回队列尾部元素,`empty`判断队列是否为空。 两题均仅使用基础数据结构操作,展示了栈与队列之间的转换逻辑。