大数据时代的管理者:顶尖企业的数据管理模式

本文涉及的产品
数据管理 DMS,安全协同 3个实例 3个月
推荐场景:
学生管理系统数据库
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介:

精品的产生是数据化管理的结果

有人问,为什么德国能够生产出安全可靠的汽车?研究者就这个问题进行了深入的研究,结果显示其中一个重要原因是:长期以来德国汽车制造商通过大量试验,积累了大量的数据,从而不断推陈出新。汽车公司通过碰撞试验,对汽车在受到外力重击的情况下的形变进行了统计。换句话说,德国能制造世界一流的汽车是对数据管理的结果。

大数据

全世界的观众都非常喜欢好莱坞影片,很多人认为好莱坞的电影极具创造力。但殊不知,好莱坞看似各不相同的电影其实都是用相近的模子做出来的,都是用数据作为制作的标尺。

好莱坞的编剧是非常重视剧情结构的,因为剧情结构是对观众心理深入研究的产物。通过对剧情结构的研究,编剧非常清楚观众在观影的某个时刻最希望看到什么,便在那一刻通过剧情满足观众,给观众情理之中却又意料之外的惊喜,从而让观众得到最大的满足。

好莱坞大片大都严格遵循好莱坞的量化剧情结构,精确到秒。以《阿凡达》为例,开片十几分钟里交代了故事的背景,一个残疾军人如何来到潘多拉星球、潘多拉星球上有什么、阿凡达是什么、人类去潘多拉星球干什么。在好莱坞模式中,如果前十几分钟不能把故事的前因后果交代清楚,观众就会失去耐心,所以导演们基本都把这一规则作为铁律来遵守。

从德国的汽车制造到美国的好莱坞制片,这些告诉我们,精品的产生都是数据化管理的结果。

我们经常能在报纸、杂志上看到很多关于优秀国际企业的管理方法、制度等,但我们看到的这些内容,其实并不是它们最核心的成功要素。国际顶尖企业最重要的成功秘籍是这些制度建立的基础——数量化的土壤。

在这些企业里,管理者运用数据和客观方法已基本成为一种思维惯式,没有数据,管理者就不会轻易做出结论。从市场分析预测到战略的实施与评估,他们都会尝试用数量化的科学方法实施。下面,来看看著名的沃尔玛公司的管理者是如何应用数量化的方法解决实际问题的。

沃尔玛的科学数量化管理

很多人都在研究沃尔玛优秀的管理经验,比如,沃尔玛注重客户满意度,员工3米内见到客户要露出8颗牙齿,以及对员工进行充分的在职培训,等等。但很多人不知道的是,沃尔玛的核心管理经验之一是其科学的数量化管理,充分运用数据来挖掘和分析解决问题的方法。

通常人们逛超市都不会只买一种商品,而且买的商品大都具有一些关联性。比如,自己在家做饭的顾客经常会同时买蔬菜、肉、大米、鱼、油和调味品等商品,而购买日用品的顾客往往会一起购买洗衣粉、香皂、卫生纸和清洁剂等。虽然每个顾客购买商品的动机非常偶然,并且各有各的特点,但是把大量顾客的采购结果汇总后,就会发现一定的规律。沃尔玛的专家们经过长时间的数据统计,发现不同商品之间是有一定关联性的,而这些商品的销售量也会有一定的比例。在这里,以蔬菜、肉类和食用油三种商品为例,沃尔玛经过长期跟踪发现,这三种商品销售额之间的大致比例是10∶8∶1。

职业经理人常会到销售现场检查巡视,但是除了销售现场的巡视之外,他们还会非常关注相关数据的变化。大型连锁超市的收银台会随时把顾客的采购信息,传送到后台的ERP信息系统进行统计。超市早上7点开门,到了9点数据就已汇总。经理通过汇总报表观察超市各商品的比例,还是以蔬菜、肉类和食用油为例,三种商品的正常比例为10∶8∶1,如果今天的数据显示三种商品的比例是10∶4∶1,就很容易发现肉类的销售出现了异常情况。顾客选择了10单位的蔬菜,本应选择8单位的肉类,但是今天肉类的销售居然降了一半,经理会立即跑到肉类销售区去查看原因。看是价格的问题,是陈列的问题,还是质量的问题?一旦找到原因,就可以立即有针对性地进行调整。这样,问题刚出现苗头,就迅速地被控制和改善了。

如果没有数据,超市经理仅凭主观感受和观察,只会发现超市的员工都非常忙碌,顾客们都在兴致勃勃地采购,似乎一切都很顺利。超市经理虽然可以在巡视中纠正一些商品摆放不当的失误,提醒员工的服装要穿戴整齐,但他很有可能忽略掉最关键的要点。

如果根据每天的报表进行统计和分析,往往还会发现更多问题。比如,一周后的一天,超市7点开门,经理9点看到蔬菜、肉类和食用油的销售比例是8∶6∶1。这说明单项商品的销售没有出现问题,但是整体客流量降低了。经理就会马上去查看,为什么今天的客流量整体减少了。

相信数据,用数据说话,已经成为沃尔玛等国际型企业的职业经理人的思维惯式。

通用电气的模型数据管理

数量化是一把精密的机械手术刀,它最大的作用是精准切割,科学拆解,再完美地组装还原。让你明白,问题本可以更好地解决,分析本可以更透彻和深入,目标本可以更清晰和具化。它的解剖对象可以是一个员工的一次绩效评估,也可以是一个企业的战略。因为我们只需用数字体现出的结果来说话,不用去考虑中间的过程和理由,只需用结果来衡量中间过程,做到的自有其道理,做不到的则是没有付出足够的努力。

提到通用电气,很多人会想到杰克·韦尔奇,他也被称为20世纪最伟大的CEO。因为大家认为,是他通过国际化和多元化战略,把通用电气打造成了全球盈利能力第一的企业。实际上,真正把通用电气引入正轨的是杰克·韦尔奇的上一任CEO雷金纳德·琼斯。

20世纪80年代以前,企业很少依赖数据为基础的管理,但现在,随着大数据的发展,人们将数据理论运用到实践中,数据让管理变得更便捷和省力。

财务总监出身的雷金纳德·琼斯在通用电气大厦顶层通过使用模型和数据对公司进行管理,他虽然较少亲身公司基层,但对分公司的了解比各个分公司经理还要清楚。正是在琼斯的带领下,1971~1980年通用电气的收入从94亿美元翻番至240多亿美元,而净利润的增长速度更快,从4.17亿美元增至15亿美元之多。

有了雷金纳德·琼斯打下的基础,杰克·韦尔奇接班之后,把科学管理和数量化分析的理念带入其国际化、多元化的战略实施中,充分运用数据、报表,对潜在收购对象的分析极为透彻,使得每次投资都能得到更大回报。

企业的规模越来越大,管理者也越来越无法仅凭直觉和经验进行管理与决策。所以,我们需要用数据,而非用感觉来管理,因为人的感觉很可能会出现偏差,一定要运用数据,运用数量化的方法观察企业运营、进行市场预测,以及对人员进行有效的管理和评估。只有这样,我们才能把握住未来的发展机遇。


本文转自d1net(转载)

相关实践学习
MySQL基础-学生管理系统数据库设计
本场景介绍如何使用DMS工具连接RDS,并使用DMS图形化工具创建数据库表。
相关文章
|
4月前
|
分布式计算 Kubernetes Hadoop
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
233 6
|
4月前
|
分布式计算 资源调度 Hadoop
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
107 2
|
4月前
|
消息中间件 监控 数据可视化
大数据-79 Kafka 集群模式 集群监控方案 JavaAPI获取集群指标 可视化监控集群方案: jconsole、Kafka Eagle
大数据-79 Kafka 集群模式 集群监控方案 JavaAPI获取集群指标 可视化监控集群方案: jconsole、Kafka Eagle
193 2
|
4月前
|
分布式计算 资源调度 大数据
大数据-110 Flink 安装部署 下载解压配置 Standalone模式启动 打包依赖(一)
大数据-110 Flink 安装部署 下载解压配置 Standalone模式启动 打包依赖(一)
146 0
|
4月前
|
分布式计算 资源调度 大数据
大数据-110 Flink 安装部署 下载解压配置 Standalone模式启动 打包依赖(二)
大数据-110 Flink 安装部署 下载解压配置 Standalone模式启动 打包依赖(二)
117 0
|
2月前
|
存储 人工智能 运维
内附源码|头部基模企业信赖之选——DMS+Lindorm智能搜索方案
本文为数据库「拥抱Data+AI」系列连载第6篇,针对企业构建智能搜索服务的痛点,介绍如何利用阿里云Data+AI解决方案构建一站式AI搜索服务,深入分析了DMS+Lindorm的智能搜索解决方案。
|
3月前
|
消息中间件 分布式计算 大数据
数据为王:大数据处理与分析技术在企业决策中的力量
【10月更文挑战第29天】在信息爆炸的时代,大数据处理与分析技术为企业提供了前所未有的洞察力和决策支持。本文探讨了大数据技术在企业决策中的重要性和实际应用,包括数据的力量、实时分析、数据驱动的决策以及数据安全与隐私保护。通过这些技术,企业能够从海量数据中提取有价值的信息,预测市场趋势,优化业务流程,从而在竞争中占据优势。
217 2
|
4月前
|
存储 分布式计算 druid
大数据-152 Apache Druid 集群模式 配置启动【下篇】 超详细!(一)
大数据-152 Apache Druid 集群模式 配置启动【下篇】 超详细!(一)
63 1
大数据-152 Apache Druid 集群模式 配置启动【下篇】 超详细!(一)
|
3月前
|
SQL 存储 算法
基于对象 - 事件模式的数据计算问题
基于对象-事件模式的数据计算是商业中最常见的数据分析任务之一。对象如用户、账号、商品等,通过唯一ID记录其相关事件,如操作日志、交易记录等。这种模式下的统计任务包括无序计算(如交易次数、通话时长)和有序计算(如漏斗分析、连续交易检测)。尽管SQL在处理无序计算时表现尚可,但在有序计算中却显得力不从心,主要原因是其对跨行记录运算的支持较弱,且大表JOIN和大结果集GROUP BY的性能较差。相比之下,SPL语言通过强化离散性和有序集合的支持,能够高效地处理这类计算任务,避免了大表JOIN和复杂的GROUP BY操作,从而显著提升了计算效率。
|
4月前
|
SQL 存储 算法
基于对象 - 事件模式的数据计算问题
基于对象-事件模式的数据计算是商业中最常见的数据分析任务之一。这种模式涉及对象(如用户、账户、商品等)及其相关的事件记录,通过这些事件数据可以进行各种统计分析,如漏斗分析、交易次数统计等。然而,SQL 在处理这类任务时表现不佳,特别是在有序计算方面。SPL 作为一种强化离散性和有序集合的语言,能够高效地处理这类计算,避免了大表 JOIN 和大结果集 GROUP BY 的性能瓶颈。通过按 ID 排序和分步计算,SPL 能够显著提高计算效率,并支持实时数据处理。