【YOLOv8改进】MobileViT 更换主干网络: 轻量级、通用且适合移动设备的视觉变压器 (论文笔记+引入代码)

简介: MobileViT是针对移动设备的轻量级视觉Transformer网络,结合CNN的局部特征、Transformer的全局注意力和ViT的表示学习。在ImageNet-1k上,它以600万参数实现78.4%的top-1准确率,超越MobileNetv3和DeiT。MobileViT不仅适用于图像分类,还在目标检测等任务中表现出色,且优化简单,代码已开源。YOLOv8引入了MobileViT块,整合卷积和Transformer结构,提升模型性能。更多详情可参考相关专栏和链接。

YOLO目标检测创新改进与实战案例专栏

专栏目录: YOLO有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例

专栏链接: YOLO基础解析+创新改进+实战案例

摘要

轻量级卷积神经网络(CNNs)已成为移动视觉任务的事实标准。它们的空间归纳偏差使它们能够跨不同视觉任务学习具有更少参数的表示。然而,这些网络在空间上是局部的。为了学习全局表示,基于自注意力的视觉Transformer(ViTs)已被采纳。与CNNs不同,ViTs是重量级的。在本文中,我们提出以下问题:是否可能结合CNNs和ViTs的优势构建一个轻量级且低延迟的网络用于移动视觉任务?为此,我们介绍了MobileViT,一个面向移动设备的轻量级通用视觉Transformer。MobileViT以不同的视角呈现了使用Transformer进行信息全局处理的方式。我们的结果表明,MobileViT在不同任务和数据集上明显优于基于CNN和ViT的网络。在ImageNet-1k数据集上,MobileViT以约600万参数实现了78.4%的top-1准确率,比MobileNetv3(基于CNN)和DeIT(基于ViT)准确率高出3.2%和6.2%。在MS-COCO目标检测任务中,MobileViT比MobileNetv3准确率高出5.7%,参数数量相近。我们的源代码是开源的,可在以下链接获取:https://github.com/apple/ml-cvnets。

创新点

MobileViT 是一种轻量级、通用且适用于移动设备的视觉Transformer网络

  1. 结合CNN、Transformer和ViTs的优势:MobileViT将CNN的空间局部性特征学习、Transformer的全局自注意力机制以及ViTs的视觉表示学习相结合,充分利用三者的优势,旨在构建轻量级、通用且适用于移动设备的视觉处理网络。
  2. 出色的性能表现:在ImageNet-1k数据集上,MobileViT在参数约为250万时优于MobileNetv2、ShuffleNetv2和MobileNetv3等传统CNNs,甚至比ResNet、DenseNet、EfficientNet等重量级CNNs表现更好。
  3. 通用用途:MobileViT不仅适用于图像分类任务,还在目标检测和语义分割等移动视觉任务中展现出优异的性能,表现出其通用性和多功能性。
  4. 简单且易于优化:与许多ViT变体需要复杂数据增强相比,MobileViT在基本数据增强下表现出更好的性能,易于优化和应用于新任务和数据集中。

MobileViT的创新设计使其成为当前领先的移动视觉处理网络之一,为移动设备上的视觉任务提供了全新的解决方案。

yolov8 引入


# MobileViT块的定义,整合了卷积和Transformer结构
class MobileViTBlock(nn.Module):
    def __init__(self, dim, depth, channel, kernel_size, patch_size, mlp_dim, dropout=0.):
        super().__init__()
        self.ph = patch_size  # 设置patch的高度
        self.pw = patch_size  # 设置patch的宽度
        self.conv1 = conv_nxn_bn(channel, channel, kernel_size)  # 第一个卷积层,用于提取特征
        self.conv2 = conv_1x1_bn(channel, dim)  # 通过1x1卷积调整通道数
        self.transformer = Transformer(dim, depth, 4, 8, mlp_dim, dropout)  # Transformer模块,用于处理序列化的patch
        self.conv3 = conv_1x1_bn(dim, channel)  # 通过1x1卷积恢复通道数
        self.conv4 = conv_nxn_bn(2 * channel, channel, kernel_size)  # 最后的卷积层,融合特征

    def forward(self, x):
        y = x.clone()  # 复制输入,用于后续与Transformer的输出融合
        x = self.conv1(x)  # 应用第一个卷积层
        x = self.conv2(x)  # 通过1x1卷积调整通道数
        _, _, h, w = x.shape  # 获取特征图的高度和宽度
        # 重组特征图以适应Transformer的输入格式
        x = rearrange(x, 'b d (h ph) (w pw) -> b (ph pw) (h w) d', ph=self.ph, pw=self.pw)
        x = self.transformer(x)  # 通过Transformer处理
        # 重新排列输出以恢复原始的特征图结构
        x = rearrange(x, 'b (ph pw) (h w) d -> b d (h ph) (w pw)', h=h // self.ph, w=w // self.pw, ph=self.ph,
                      pw=self.pw)
        x = self.conv3(x)  # 通过1x1卷积恢复通道数
        x = torch.cat((x, y), 1)  # 将Transformer的输出与原始特征图融合
        x = self.conv4(x)  # 应用最后的卷积层融合特征
        return x

task与yaml配置

详见:https://blog.csdn.net/shangyanaf/article/details/136962297

相关文章
|
4天前
|
计算机视觉
【YOLOv8改进 - 特征融合NECK】 HS-FPN :用于处理多尺度特征融合的网络结构,降低参数
MFDS-DETR是针对白细胞检测的创新方法,它通过HS-FPN和可变形自注意力解决规模差异和特征稀缺问题。HS-FPN利用通道注意力模块增强特征表达,改善多尺度挑战。代码和数据集可在给定链接获取。此方法在WBCDD、LISC和BCCD数据集上表现优越,证明了其有效性和通用性。YOLO系列文章提供了更多目标检测改进和实战案例。
|
12天前
|
机器学习/深度学习 自然语言处理 并行计算
YOLOv8改进 | 注意力机制 | 在主干网络中添加MHSA模块【原理+附完整代码】
Transformer中的多头自注意力机制(Multi-Head Self-Attention, MHSA)被用来增强模型捕捉序列数据中复杂关系的能力。该机制通过并行计算多个注意力头,使模型能关注不同位置和子空间的特征,提高了表示多样性。在YOLOv8的改进中,可以将MHSA代码添加到`/ultralytics/ultralytics/nn/modules/conv.py`,以增强网络的表示能力。完整实现和教程可在提供的链接中找到。
YOLOv8打印模型结构配置信息并查看网络模型详细参数:参数量、计算量(GFLOPS)
YOLOv8打印模型结构配置信息并查看网络模型详细参数:参数量、计算量(GFLOPS)
|
5天前
|
机器学习/深度学习 计算机视觉
【YOLOv8改进】MSFN(Multi-Scale Feed-Forward Network):多尺度前馈网络
**HCANet: 高光谱图像去噪新方法**\n混合卷积与注意力网络(Hybrid Convolutional and Attention Network)是针对HSI去噪的创新模型,结合CNN和Transformer,强化全局与局部特征。它使用卷积注意力融合模块捕获长距离依赖和局部光谱相关性,多尺度前馈网络提升多尺度信息聚合。代码可在[GitHub](https://github.com/summitgao/HCANet)获取。
|
12天前
|
机器学习/深度学习 数据可视化 TensorFlow
【手把手教学】如何可视化YOLOv8深度学习的网络结构并保存
【手把手教学】如何可视化YOLOv8深度学习的网络结构并保存
|
12天前
|
机器学习/深度学习 异构计算
【保姆级教程|YOLOv8改进】【5】精度与速度双提升,使用FasterNet替换主干网络
【保姆级教程|YOLOv8改进】【5】精度与速度双提升,使用FasterNet替换主干网络
|
1月前
|
消息中间件 Java Linux
2024年最全BATJ真题突击:Java基础+JVM+分布式高并发+网络编程+Linux(1),2024年最新意外的惊喜
2024年最全BATJ真题突击:Java基础+JVM+分布式高并发+网络编程+Linux(1),2024年最新意外的惊喜
|
19天前
|
网络协议 算法 Linux
【嵌入式软件工程师面经】Linux网络编程Socket
【嵌入式软件工程师面经】Linux网络编程Socket
38 1
|
4天前
|
安全 物联网 Linux
学习Linux对网络安全的重要性
**学习Linux对网络安全至关重要:** 1. 开源操作系统广泛应用于服务器、网络设备,掌握Linux是安全专家必备技能。 2. Linux内置安全特性,如最小权限和防火墙,加上丰富的安全工具,提供强大保障。 3. 可定制性允许灵活配置,满足安全需求,开源社区提供持续更新和教育资源。 4. 学习Linux能提升攻防能力,用于系统加固和渗透测试,适应跨平台安全场景。 5. 随着云计算和物联网发展,Linux在网络安全中的角色日益关键。
29 3
|
21天前
|
Linux 数据安全/隐私保护 Windows
linux 搭建cloudreve win映射网络驱动器WebDav
linux 搭建cloudreve win映射网络驱动器WebDav
26 1

热门文章

最新文章