Python提取文本文件(.txt)数据的方法

简介: 该文介绍了如何使用Python遍历含有多個`.txt`文本文件的文件夹,找出文件名包含`Point`的文件,并从中提取特定波长数据。目标是收集所有相关文件中指定波长对应的后5列数据,同时保留文件名。代码示例展示了如何使用`os`和`pandas`库实现这一功能,最终将所有数据整合到一个DataFrame对象中。

 本文介绍基于Python语言,遍历文件夹并从中找到文件名称符合我们需求的多个.txt格式文本文件,并从上述每一个文本文件中,找到我们需要的指定数据,最后得到所有文本文件中我们需要的数据的合集的方法。

  首先,我们来明确一下本文的具体需求。现有一个文件夹,其中含有大量的.txt格式文本文件,如下图所示;同时,这些文本文件中,文件名中含有Point字段的,都是我们需要的文件,我们接下来的操作都是对这些我们需要的文件而言的;而不含有Point这个字段的,那么我们就不需要。

  随后,在每一个我们需要的文本文件(也就是文件名中含有Point字段的文件)中,都具有着如下图所示的数据格式。我们希望,基于第1列(红色框内所示的列)数据(这一列数据表示波长),找到几个指定波长数据所对应的行,并将这些行所对应的后5列数据都保存下来。

  此外,前面也提到,文件名中含有Point字段的文本文件是有多个的;因此希望将所有文本文件中,符合要求的数据行都保存在一个变量,且保存的时候也将文件名称保存下来,从而知道保存的每一行数据,具体是来自于哪一个文件。

  知道了需求,我们就可以开始代码的书写。其中,本文用到的具体代码如下所示。

# -*- coding: utf-8 -*-
"""
Created on Fri Jul  7 23:39:43 2023
@author: fkxxgis
"""
import os
import pandas as pd
original_file_folder = "E:/03_Experiment/202306HuaiLai/HuaiLai_20230627_SpectralCurve"
result_file_path = "E:/03_Experiment/202306HuaiLai/HuaiLai_20230627_SpectralCurve/Result.csv"
target_wavelength = [490, 561, 665, 702, 863]
result_all_df = pd.DataFrame()
for file in os.listdir(original_file_folder):
    if file.endswith(".txt") and file[3] == "P":
        file_path = os.path.join(original_file_folder, file)
        df = pd.read_csv(file_path, delimiter = "\t")
        select_df = df[df["Wavelength"].isin(target_wavelength)]
        select_df.insert(0, "file_name", file)
        
        data_append = select_df.iloc[1 : , 2 : ]
        result_df = pd.DataFrame()
        result_df = pd.concat([select_df.iloc[[0]].reset_index(drop = True), pd.DataFrame(data_append.values.flatten()).transpose()], axis = 1)
        result_df.columns = range(result_df.shape[1])
        result_all_df = pd.concat([result_all_df, result_df], axis = 0, ignore_index = True)

  上述代码具体的含义如下所示。

  首先,我们导入了需要使用的库——os库用于文件操作,而pandas库则用于数据处理;接下来,我们定义了原始文件夹路径 original_file_folder 和结果文件路径 result_file_path。然后,我们创建一个空的DataFrame对象result_all_df,用于存储所有处理后的结果。

  再接下来,通过使用os.listdir()函数,我们遍历指定文件夹中的文件。我们通过条件过滤,只选择以.txt结尾且文件名的第四个字母是P的文件——这些文件就是我们需要的文件。随后,对于每个满足条件的文件,我们构建了文件的完整路径file_path,并使用pd.read_csv()函数读取文件的内容。在这里,我们使用制表符作为分隔符,并将数据存储在DataFrame对象df中。

  然后,我们根据给定的目标波长列表target_wavelength,使用条件筛选出包含目标波长的数据行,并将文件名插入到选定的DataFrame中,即在第一列插入名为file_name的列——这一列用于保存我们的文件名。

  接下来,在我们已经提取出来的数据中,从第二行开始,提取每一行从第三列到最后一列的数据,将其展平为一维数组,从而方便接下来将其放在原本第一行的后面(右侧)。然后,我们使用pd.DataFrame()函数将展平的数组转换为DataFrame对象;紧接着,我们使用pd.concat()函数将原本的第一行数据,和展平后的数据按列合并(也就是放在了第一行的右侧),并将结果存储在result_df中。

  最后,我们将每个文件的处理结果按行合并到result_all_df中,通过使用pd.concat()函数,指定axis=0表示按行合并。由于我这里的需求是,只要保证文本文件中的数据被提取到一个变量中就够了,所以没有将结果保存为一个独立的文件。如果需要保存为独立的.csv格式文件,大家可以参考文章多次复制Excel符合要求的数据行:Python批量实现

  运行上述代码,即可看到保存我们提取出来的数据的结果的变量result_all_df的具体情况如下图所示。可以看到,已经保存了我们提取出来的具体数据,以及数据具体来源文件的文件名称;并且从一个文本文件中提取出来的数据,都是保存在一行中,方便我们后期的进一步处理。

相关文章
WK
|
22天前
|
Python
Python中format_map()方法
在Python中,`format_map()`方法用于使用字典格式化字符串。它接受一个字典作为参数,用字典中的键值对替换字符串中的占位符。此方法适用于从字典动态获取值的场景,尤其在处理大量替换值时更为清晰和方便。
WK
68 36
|
27天前
|
数据采集 JSON 数据处理
抓取和分析JSON数据:使用Python构建数据处理管道
在大数据时代,电商网站如亚马逊、京东等成为数据采集的重要来源。本文介绍如何使用Python结合代理IP、多线程等技术,高效、隐秘地抓取并处理电商网站的JSON数据。通过爬虫代理服务,模拟真实用户行为,提升抓取效率和稳定性。示例代码展示了如何抓取亚马逊商品信息并进行解析。
抓取和分析JSON数据:使用Python构建数据处理管道
|
12天前
|
图形学 Python
SciPy 空间数据2
凸包(Convex Hull)是计算几何中的概念,指包含给定点集的所有凸集的交集。可以通过 `ConvexHull()` 方法创建凸包。示例代码展示了如何使用 `scipy` 库和 `matplotlib` 绘制给定点集的凸包。
21 1
|
13天前
|
JSON 数据格式 索引
Python中序列化/反序列化JSON格式的数据
【11月更文挑战第4天】本文介绍了 Python 中使用 `json` 模块进行序列化和反序列化的操作。序列化是指将 Python 对象(如字典、列表)转换为 JSON 字符串,主要使用 `json.dumps` 方法。示例包括基本的字典和列表序列化,以及自定义类的序列化。反序列化则是将 JSON 字符串转换回 Python 对象,使用 `json.loads` 方法。文中还提供了具体的代码示例,展示了如何处理不同类型的 Python 对象。
|
13天前
|
数据采集 Web App开发 iOS开发
如何使用 Python 语言的正则表达式进行网页数据的爬取?
使用 Python 进行网页数据爬取的步骤包括:1. 安装必要库(requests、re、bs4);2. 发送 HTTP 请求获取网页内容;3. 使用正则表达式提取数据;4. 数据清洗和处理;5. 循环遍历多个页面。通过这些步骤,可以高效地从网页中提取所需信息。
|
25天前
|
数据可视化 算法 JavaScript
基于图论的时间序列数据平稳性与连通性分析:利用图形、数学和 Python 揭示时间序列数据中的隐藏模式
本文探讨了如何利用图论分析时间序列数据的平稳性和连通性。通过将时间序列数据转换为图结构,计算片段间的相似性,并构建连通图,可以揭示数据中的隐藏模式。文章介绍了平稳性的概念,提出了基于图的平稳性度量,并展示了图分区在可视化平稳性中的应用。此外,还模拟了不同平稳性和非平稳性程度的信号,分析了图度量的变化,为时间序列数据分析提供了新视角。
53 0
基于图论的时间序列数据平稳性与连通性分析:利用图形、数学和 Python 揭示时间序列数据中的隐藏模式
|
29天前
|
开发者 Python
Python中的魔法方法与运算符重载
在Python的奇妙世界里,魔法方法(Magic Methods)和运算符重载(Operator Overloading)是两个强大的特性,它们允许开发者以更自然、更直观的方式操作对象。本文将深入探讨这些概念,并通过实例展示如何利用它们来增强代码的可读性和表达力。
|
12天前
|
索引 Python
SciPy 空间数据1
SciPy 通过 `scipy.spatial` 模块处理空间数据,如判断点是否在边界内、计算最近点等。三角测量是通过测量角度来确定目标距离的方法。多边形的三角测量可将其分解为多个三角形,用于计算面积。Delaunay 三角剖分是一种常用方法,可以对一系列点进行三角剖分。示例代码展示了如何使用 `Delaunay()` 函数创建三角形并绘制。
21 0
|
3月前
|
SQL JSON C语言
Python中字符串的三种定义方法
Python中字符串的三种定义方法
|
5月前
|
Python
python之字符串定义、切片、连接、重复、遍历、字符串方法
python之字符串定义、切片、连接、重复、遍历、字符串方法
python之字符串定义、切片、连接、重复、遍历、字符串方法