并发控制利器Semaphore

简介: 并发控制利器Semaphore

并发控制利器:Semaphore详解与应用

简介

Semaphore 是Java并发编程中的一个重要工具,用于管理对共享资源的访问权限,确保系统资源不会因过度访问而耗尽。形象地说,Semaphore 可以比喻为交通信号灯,它控制着能够同时进入特定区域(如马路)的车辆数(线程数)。当一定数量的车辆(线程)进入后,其余车辆必须等待,直到有车辆离开,空出“车位”(许可证)为止。在编程中,Semaphore 通过协调线程访问,保证公共资源的合理分配。



应用场景

Semaphore 特别适用于有限资源访问控制的场景,例如数据库连接池管理、文件读写控制等。一个典型示例是数据库连接限制:假设你需要从数万个文件中读取数据,并将其保存至数据库,虽然读取操作(IO密集型)可以并行处理,但数据库连接数有限(例如10个)。此时,Semaphore 可以用来控制仅有10个线程能同时获取数据库连接,避免超出连接池容量。

public class SemaphoreTest {
    private static final int THREAD_COUNT = 30;
    private static ExecutorService threadPool = Executors.newFixedThreadPool(THREAD_COUNT);
    private static Semaphore s = new Semaphore(10);

    public static void main(String[] args) {
        for (int i = 0; i < THREAD_COUNT; i++) {
            threadPool.execute(new Runnable() {
                @Override
                public void run() {
                    try {
                        s.acquire();
                        System.out.println("Saving data...");
                        s.release();
                    } catch (InterruptedException e) {
                        Thread.currentThread().interrupt();
                    }
                }
            });
        }
        threadPool.shutdown();
    }
}

在这个例子中,尽管启用了30个线程,但最多只有10个线程能够同时执行数据库保存操作,通过 Semaphore(10) 初始化,确保了并发访问的线程数不超过10。


其他方法及实现机制

Semaphore 提供了多个方法来帮助管理资源访问:

  • availablePermits():返回当前可用的许可证数量。
  • getQueueLength():返回等待获取许可证的线程数。
  • hasQueuedThreads():检查是否有线程正在等待许可证。
  • reducePermits(int reduction):减少指定数量的许可证,是一个受保护方法。
  • getQueuedThreads():返回所有等待的线程集合,同样是受保护方法。

Semaphore 的内部实现基于AQS(AbstractQueuedSynchronizer),利用了CLH队列来管理等待线程。CLH队列是一种FIFO(先进先出)的线程等待队列,当线程尝试获取许可证失败时,会被封装成节点加入到队列中等待。CLH队列的节点结构包含前驱节点和后继节点的引用,以及线程状态等信息,通过这些信息维护线程的等待顺序。


在尝试获取锁的操作中,AQS的acquire() 方法首先尝试快速获取资源,失败则通过addWaiter()方法将当前线程封装成节点并加入队列。此过程体现了CLH队列的结构和等待机制,确保了线程安全且高效地获取和释放资源。


总之,Semaphore 作为一种灵活的并发控制工具,通过限制并发访问的数量,有效管理共享资源,是解决资源竞争和提高系统并发能力的重要手段。

相关文章
|
5月前
|
Java
Java并发编程中的锁机制
【2月更文挑战第22天】 在Java并发编程中,锁机制是一种重要的同步手段,用于保证多个线程在访问共享资源时的安全性。本文将介绍Java锁机制的基本概念、种类以及使用方法,帮助读者深入理解并发编程中的锁机制。
|
5月前
|
缓存 安全 Java
高性能解决线程饥饿的利器 StampedLock
高性能解决线程饥饿的利器 StampedLock
67 1
|
17天前
|
Java 数据库
JAVA并发编程-一文看懂全部锁机制
曾几何时,面试官问:java都有哪些锁?小白,一脸无辜:用过的有synchronized,其他不清楚。面试官:回去等通知! 今天我们庖丁解牛说说,各种锁有什么区别、什么场景可以用,通俗直白的分析,让小白再也不怕面试官八股文拷打。
|
17天前
|
安全 Java 开发者
Java并发编程中的锁机制解析
本文深入探讨了Java中用于管理多线程同步的关键工具——锁机制。通过分析synchronized关键字和ReentrantLock类等核心概念,揭示了它们在构建线程安全应用中的重要性。同时,文章还讨论了锁机制的高级特性,如公平性、类锁和对象锁的区别,以及锁的优化技术如锁粗化和锁消除。此外,指出了在高并发环境下锁竞争可能导致的问题,并提出了减少锁持有时间和使用无锁编程等策略来优化性能的建议。最后,强调了理解和正确使用Java锁机制对于开发高效、可靠并发应用程序的重要性。
16 3
|
5月前
|
缓存 安全 Java
Java并发编程中的锁机制及其应用
传统的锁机制在Java并发编程中扮演着重要角色,但随着技术的发展,新的锁机制和应用不断涌现。本文将深入探讨Java并发编程中常用的锁机制,包括synchronized关键字、ReentrantLock、ReadWriteLock等,并结合实际案例分析其应用场景和优劣势。通过本文的阐述,读者将对Java并发编程中的锁机制有更为深入的了解。
50 0
|
3月前
|
Java 开发者
Java并发编程中的锁机制与性能优化
【7月更文挑战第14天】本文深入探讨了Java中锁的概念、种类及其在并发编程中的应用,并分析了不同锁类型对程序性能的影响。通过实例展示了如何合理选择和使用锁来提升应用的性能,同时指出了锁使用过程中可能遇到的问题和调优策略。旨在为Java开发者提供锁机制的深入理解和性能优化的实用建议。
46 0
|
4月前
|
安全 Java 程序员
Java并发编程中的锁机制与优化策略
【6月更文挑战第17天】在Java并发编程的世界中,锁是维护数据一致性和线程安全的关键。本文将深入探讨Java中的锁机制,包括内置锁、显式锁以及读写锁的原理和使用场景。我们将通过实际案例分析锁的优化策略,如减少锁粒度、使用并发容器以及避免死锁的技巧,旨在帮助开发者提升多线程程序的性能和可靠性。
|
5月前
|
算法 安全 Java
Java多线程基础-14:并发编程中常见的锁策略(一)
乐观锁和悲观锁是并发控制的两种策略。悲观锁假设数据容易产生冲突,因此在读取时即加锁,防止其他线程修改,可能导致效率较低。
46 0
|
5月前
|
安全 Java 调度
Java多线程基础-14:并发编程中常见的锁策略(二)
这段内容介绍了互斥锁和读写锁的概念以及它们在多线程环境中的应用。互斥锁仅允许进入和退出代码块时加锁和解锁,而读写锁则区分读和写操作,允许多个线程同时读但写时互斥。
45 0
|
5月前
|
缓存 安全 Java
JAVA多线程编程与并发控制
```markdown Java多线程编程与并发控制关键点:1) 通过Thread或Runnable创建线程,管理线程状态;2) 使用synchronized关键字和ReentrantLock实现线程同步,防止数据竞争;3) 利用线程池(如Executors)优化资源管理,提高系统效率。并发控制需注意线程安全,避免死锁,确保程序正确稳定。 ```