MySQL in 太慢的 3 种优化方案

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: MySQL中的`eq_range_index_dive_limit`参数默认值为200,影响了IN查询的执行方式。当IN列表项少于这个值时,MySQL会使用扫描索引树(精确成本计算),而多于此值则使用索引统计(快速但可能不准)来分析查询成本。大量IN值可能导致性能下降。解决方案包括:1) 分批查询;2) 使用UNION ALL创建内存临时表;3) 创建实体表存储IN值并进行JOIN操作。注意,实体表需及时清理并避免反复插入删除导致性能下降。

MySQL in 太多出现慢的原因

在MySQL中有一个配置参数eq_range_index_dive_limit,它的作用是一个等值查询(比如:in 查询),其等值条件数小于该配置参数,则查询成本分析使用扫描索引树的方式分析,如果大于等于该配置参数,则使用索引统计的方式分析。使用扫描索引树的方式分析在MySQL内部叫做index dives,使用索引统计的方式分析在MySQL内部叫做index statistics

eq_range_index_dive_limit 默认值是 200 .

csharp

复制代码

select * from dogs where id in (1, 2, 3, 4);

结合上面这条 SQL,就是如果 SQL 中 IN 查询字段 id 的值出现的数量小于 eq_range_index_dive_limit,则走索引树扫描分析查询成本,大于等于 eq_range_index_dive_limit,则走索引统计的方式分析查询成本。

扫描索引树的方式分析 SQL 的查询成本,它的好处就是在 IN 查询的值数量不多时,得到的成本结果是精确的,这就意味着 MySQL 可以选择正确的执行计划,保证语句查询的性能。你现在一定有个疑问:为什么说是在 IN 查询的值数量不多时才是精确的,因为扫描性能的原因,MySQL 在 IN 查询的值数量很多的情况下,扫描索引树成本提高,性能下降,导致查询成本分析代价也随之提高了。

索引统计的方式分析 SQL 的查询成本,由于无需扫描索引树,所以,它的优势就是查询成本分析过程快,代价低。但是,它的缺点也很明显,由于无需扫描索引树,通过粗略统计索引使用情况,得出查询成本,导致 MySQL 可能选错执行计划,使得 SQL 查询性能下降。

解决方案

方案一

可以通过拆分 in 的数量, 分批查询.

csharp

复制代码

select * from dogs where id in (1, 2);

csharp

复制代码

select * from dogs where id in (3, 4);

这种方法缺点也明显, 对于分页或者是查询总条件的一部分并不能实现.

方案二

使用 union all 实现内存级别临时表.

sql

复制代码

select *
from users where task_created > '2020-01-01' and  task_tag_id in ('-1', '1' , ....'1000个');

结果: 在 1 s 631 ms (execution: 172 ms, fetching: 1 s 459 ms) 内检索到从 1 开始的 500 行

sql

复制代码

select * from users u
    inner join (select -99 as id union all select '1' union all select '-1'
union all select '1' ) as temp on u.task_tag_id = temp.id
where task_created > '2020-01-01'

结果: 在 383 ms (execution: 201 ms, fetching: 182 ms) 内检索到从 1 开始的 500 行

方案三

使用 实体表

创建实体表

sql

复制代码

create table jump_data
(
    id          bigint auto_increment
        primary key,
    user_id      bigint   default -1                not null comment '人员id',
    hash        varchar(70)          not null comment '当前存储关联 hash 值',
    ref         varchar(100)                comment '关联数据 id',
    ref_long    bigint                             null,
    create_time datetime default CURRENT_TIMESTAMP null comment '创建时间',
    index idx_hash_ref(hash, ref),
    index idx_hash_ref_long(hash, ref)
);
  1. 将上面 task_tag_id 插入至 临时表
  1. 可使用 insert values 插入
  1. 如果是结果值可以直接使用
  1. insert select 插入

使用

csharp

复制代码

select *
from users u  inner join jump_data jd on u.hash = '' and u.ref_long = u.id
where task_created > '2020-01-01'

⚠ 注意点

  1. 需要及时清理 jump_data 表
  2. 定时需要 truncate 表因为反复的新增和删除导致 MySQL 预估数据不准确导致速度下降


转载来源:https://juejin.cn/post/7245564421316788284

相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
2月前
|
存储 关系型数据库 MySQL
MySQL细节优化:关闭大小写敏感功能的方法。
通过这种方法,你就可以成功关闭 MySQL 的大小写敏感功能,让你的数据库操作更加便捷。
160 19
|
3月前
|
缓存 算法 关系型数据库
MySQL底层概述—8.JOIN排序索引优化
本文主要介绍了MySQL中几种关键的优化技术和概念,包括Join算法原理、IN和EXISTS函数的使用场景、索引排序与额外排序(Using filesort)的区别及优化方法、以及单表和多表查询的索引优化策略。
189 22
MySQL底层概述—8.JOIN排序索引优化
|
3月前
|
SQL 关系型数据库 MySQL
MySQL底层概述—7.优化原则及慢查询
本文主要介绍了:Explain概述、Explain详解、索引优化数据准备、索引优化原则详解、慢查询设置与测试、慢查询SQL优化思路
190 15
MySQL底层概述—7.优化原则及慢查询
|
2月前
|
消息中间件 缓存 NoSQL
缓存与数据库的一致性方案,Redis与Mysql一致性方案,大厂P8的终极方案(图解+秒懂+史上最全)
缓存与数据库的一致性方案,Redis与Mysql一致性方案,大厂P8的终极方案(图解+秒懂+史上最全)
|
3月前
|
存储 缓存 关系型数据库
MySQL底层概述—5.InnoDB参数优化
本文介绍了MySQL数据库中与内存、日志和IO线程相关的参数优化,旨在提升数据库性能。主要内容包括: 1. 内存相关参数优化:缓冲池内存大小配置、配置多个Buffer Pool实例、Chunk大小配置、InnoDB缓存性能评估、Page管理相关参数、Change Buffer相关参数优化。 2. 日志相关参数优化:日志缓冲区配置、日志文件参数优化。 3. IO线程相关参数优化: 查询缓存参数、脏页刷盘参数、LRU链表参数、脏页刷盘相关参数。
155 12
MySQL底层概述—5.InnoDB参数优化
|
3月前
|
SQL 关系型数据库 MySQL
基于SQL Server / MySQL进行百万条数据过滤优化方案
对百万级别数据进行高效过滤查询,需要综合使用索引、查询优化、表分区、统计信息和视图等技术手段。通过合理的数据库设计和查询优化,可以显著提升查询性能,确保系统的高效稳定运行。
120 9
|
3月前
|
关系型数据库 MySQL 数据库
从MySQL优化到脑力健康:技术人与效率的双重提升
聊到效率这个事,大家应该都挺有感触的吧。 不管是技术优化还是个人状态调整,怎么能更快、更省力地完成事情,都是我们每天要琢磨的事。
86 23
|
3月前
|
监控 关系型数据库 MySQL
MySQL和SQLSugar百万条数据查询分页优化
在面对百万条数据的查询时,优化MySQL和SQLSugar的分页性能是非常重要的。通过合理使用索引、调整查询语句、使用缓存以及采用高效的分页策略,可以显著提高查询效率。本文介绍的技巧和方法,可以为开发人员在数据处理和查询优化中提供有效的指导,提升系统的性能和用户体验。掌握这些技巧后,您可以在处理海量数据时更加游刃有余。
333 9
|
3月前
|
关系型数据库 MySQL
图解MySQL【日志】——磁盘 I/O 次数过高时优化的办法
当 MySQL 磁盘 I/O 次数过高时,可通过调整参数优化。控制刷盘时机以降低频率:组提交参数 `binlog_group_commit_sync_delay` 和 `binlog_group_commit_sync_no_delay_count` 调整等待时间和事务数量;`sync_binlog=N` 设置 write 和 fsync 频率,`innodb_flush_log_at_trx_commit=2` 使提交时只写入 Redo Log 文件,由 OS 择机持久化,但两者在 OS 崩溃时有丢失数据风险。
96 3
|
3月前
|
SQL 关系型数据库 MySQL
MySQL原理简介—11.优化案例介绍
本文介绍了四个SQL性能优化案例,涵盖不同场景下的问题分析与解决方案: 1. 禁止或改写SQL避免自动半连接优化。 2. 指定索引避免按聚簇索引全表扫描大表。 3. 按聚簇索引扫描小表减少回表次数。 4. 避免产生长事务长时间执行。

相关产品

  • 云数据库 RDS MySQL 版