网络原理-UDP/TCP详解

简介: 网络原理-UDP/TCP详解

一. UDP协议

UDP协议端格式

由上图可以看出,一个UDP报文最大长度就是65535.


• 16位长度,表示整个数据报(UDP首部+UDP数据)的最大长度(注意,这里的16位UDP长度只是一个标识这个数据报长度的字段,并不是这个数据报传输的数据)


• 如果校验和出错,就会直接丢弃。


校验和:通过网线传输时,电信号使用高低电平来表示0和1.。但是,如果外部环境干扰,就有可能导致低电平->高电平,高电平->低电平,造成比特翻转=>数据就传输错了。校验和就是通过数据报中的数据内容通过计算得到的。值得注意的是:如果校验和不对,此时你的数据一定不对,如果校验和对,但是数据也有一定概率是错误的。


面向数据报:应用层交给UDP长的报文,UDP原样发送,既不会拆分,也不会合并。


用UDP传输100个字节的数据报:


如果一次发送端发送100个字节,那么接收端也必须一次接收100个字节;而不能循环10次接收,每次接收10个字节。


缓冲区:UDP只有接收缓冲区,没有发送缓冲区


UDP没有真正意义上的发送缓冲区,发送的数据会直接交给内核,由内核将数据传给网络层协议进行后续的传输动作;


DUP具有接收缓冲区,但是这个接收缓冲区不能保证收到的DUP报的顺序和发送DUP报的顺序一致;如果缓冲区满了,再到达的DUP数据就会被丢弃;

二. TCP协议

TCP协议段格式:

2.1 TCP原理

2.1.1 确认应答机制

TCP 将每个字节的数据都进行了编号。即位序列号。

发送方的序号为最后一个字节的编号,确认序号为无意义的数据;

接收方的序号和发送方的序号无关,确认序号为接收数据的序号+1。

(在接收缓冲区中,优先级队列通过序号来确定数据的发送先后顺序 )

接收方就可以通过ack的确认序号,告诉发送方哪些数据已经收到了。

2.1.2 超时重传机制

主机A发送数据给B之后,可能因为网络拥堵等原因,数据无法到达主机B;

如果主机A在一个特定时间间隔内没有收到B发来的确认应答,就会重发。

但是,主机A未收到B发来的确认应答,也可能是因为主机B收到了数据,但是ACK丢失了;

因此若ACK丢失了,主机B会收到很多重复数据。那么TCP协议需要能够识别哪些包是重复的包,并且把重复的丢弃掉。这时候我们就可以利用前面提到的序号来达到去重的效果。


超时重传后,重复发送的数据报仍可能会丢失,TCP为了保证无论在任何环境下都能比较高性能的通信,因此会动态的计算这个最大超时时间。


如果重发一次,仍得不到应答,TCP就会将这个超时时间延长后再重发,在不停的延长超时时间后,当累积到一定的重传次数后,TCP就会重置连接,如果重置连接失效,TCP就会关闭连接,放弃网络通信。

2.1.3 连接管理机制(三次握手,四次挥手)

建立连接:三次握手

握手指的是通信双发,进行一次网络交互,相当于客户端和服务器之间,通过三次交互,建立了连接关系。

syn称为同步报文段。意思就是一方要向另一方,申请连接。


在报文头部中有6个特殊的比特位,如果设为1,则表示特定含义。


其中第二位,是ACK,如果这一位为1,表示当前TCP数据报是一个应答报文;


其中第五位,是SYN,如果这一位为1,表示当前TCP数据报是一个同步报文;


如果一个TCP数据报,第二位和第五位都是1,则当前这个报文时SYN+ACK


三次握手这个过程,本质上时投石问路,验证了客户端和服务器,各自的发送能力和接收能力是否正常  

断开连接:四次挥手

FIN:结束报文段

四次挥手中的ack和fin是否可以合并?


在三次握手中,ack和syn时同一时刻触发的(都是内核来完成的)


四次挥手,ack和fin则是在不同时机触发的。


ack是内核完成的,会在收到fin的时候第一时间返回


fin则是应用程序代码控制的。在调用到socket的close方法时候才会出发fin


finally{ 
    //thread.sleep(1000);
    socket.close();
}

这个close的执行时机,可能是立即,也可能是隔很久,却决于你的代码怎么写。


如果立即 close,趁着刚才ack还没发呢,这里就可以合并,如果是隔很久再close,此时fin就只能单独发了。


注:这里的close只是进程关闭了,但是连接(连接是内核维护的)还在,客户端发送的ack,服务器仍然可以收到。

2.1.4 滑动窗口(效率机制)

对于每一个发送的数据段,都要给一个ACK确认应答,收到ACK后再发送下一个数据段。.由于这样的一收一发的方式性能较低,那么我们一次发送多条数据,就可以大大的提高性能。(其实是将多个段的等待时间重叠在一起了。

• 窗口大小指的是无需等待应答而可以继续发送数据的最大值.上图的窗口大小就是4000个字节(4个段)。


• 发送前四个段的时候,不需要等待任何ACK,直接发送。


• 操作系统内核为了维护这个滑动窗口,需要开辟发送缓冲区来记录当前还有哪些数据没有应答;只有确认应答过的数据,才能从缓冲区删掉。


• 窗口越大,则网络的吞吐率就越高。

如果出现了丢包的情况,如何重传?分两种情况:

情况一:数据包已经抵达,ACK被丢了。

这种情况下,部分ACK丢了并不要紧,因为可以通过后续的ACK进行确认。如果1001的 ACK没有接收到,收到了2001的ACK,那么就说明已经接收到了2001以前的数据。

情况二:数据包直接丢了。

• 当某一段报文丢失之后,发送端会一直收到1001这样的ACK,就像是在提醒发送端“我想要的是"1001"一样;


• 当发送端主机连续收到三次同样的“1001”这样的应答,就会将对应的数据1001~2000重新发送


• 这个时候接收端收到了1001之后,再次返回的ACK就是7001了,因为2001~7000接收端其实之前就已经收到了,被放到了接收端操作系统内核的接收缓冲区中。

2.1.5 流量控制(安全机制)

接收端处理数据的速度是有限的。如果发送端发送的太快,导致接收端的缓冲区被打满,这个时候如果发送端继续发送,就会造成丢包,继而引起丢包重传等一些列连锁反应。


因此TCP支持根据接收端的处理能力,来决定发送端的发送速度。这个机制就叫做流量控制


• 接收端将自己可以接收的缓冲区大小放入TCP首部中的“窗口大小”字段,通过ACK端通知发送端,此时发送端就可以根据这个窗口大小来批量发送这些数据了。


• 接收端一旦发现自己的缓冲区快满了,就会将窗口大小设置成一个更小的值通知给发送端;


• 发送端接收到了这个窗口之后,就会减慢自己的发送速度


• 如果接收端缓冲区满了,就会将窗口设置为0;这时发送方就不再发送数据,但是仍需要定期发送一个窗口探测数据段,使接收端把窗口大小告诉发送端。

上述过程是把返回的窗口大小,当作实际的窗口,实践中可能会有出入。

发送方的窗口大小=min(流量控制,拥塞控制)。

2.1.6 拥塞控制(安全机制)

虽然TCP有了滑动窗口这个大杀器,能够高效可靠的发送大量的数据.但是如果在刚开始阶段就发送大量的数据,仍然可能引发问题.


因为网络上有很多的计算机,在传输的过程中,需要经历许多的节点,可能当前的网络状态就已经比较拥堵了,但是此时在不清楚当前网络状态下,贸然发送大量的数据,是很有可能引起雪上加霜的.于是,不管在客户端与服务器之间是经历怎样的路径,把这个路径当做黑盒一样的东西,每次发送不同数量的请求,来试验出最佳的发送窗口.

TCP引入 慢启动 机制,先发送少量的数据,探探路,摸清当前的网络拥堵状态,再决定按照多大的速度传输数据

• 发送开始的时候,定义拥塞窗口大小为1

• 每次收到一个ACK应答,拥塞窗口加1

• 每次发送数据包的时候,将拥塞窗口和接收端主机反馈的窗口大小作比较,取较小的值作为实际发送的窗口

为了让拥塞窗口不增长的那么快,变引入了一个叫做慢启动的阈值,当拥塞窗口超过这个阈值的时候,不再按照指数的方式增长,而是按照线性方式增长

• 当TCP开始启动的时候,慢启动阈值等于窗口最大值;

• 在每次超时重发的时候,慢启动阈值会变成原来的一般,同时拥塞窗口重置回1.

2.1.7 延迟应答

如果接受数据的主机立刻返回ACK应答,这时候返回的窗口肯能比较小.

• 假设接收缓冲区为1M,一次收到了500k的数据,如果立刻应答,返回的窗口就是500k


• 但实际上可能处理端处理的速度很快,10ms之内就把500k的数据从缓冲区消费掉了


• 在这种情况下,接收端处理还远没有达到自己的极限,即使窗口再放大一些,也能处理过来


• 如果接受端稍微等一会再应答,比如等待200ms再应答,那么这个时候返回的窗口大小就是1M

窗口越大,网络吞吐量就越大,传输效率就越高.我们的目标是在保证网络不拥塞的情况下尽量提高传输效率.

但是并不是所有的包都可以延迟应答

数量限制:每隔N个包就应答一次;

时间限制:超过最大延迟时间就应答一次

具体的数量和超时时间,操作系统不同也有差异;一般N取2,超时时间取200ms(根据业务需求可自定义)

2.1.8 捎带应答

在延迟应答的基础上,我们可以发现,很多情况下,客户端服务器在应用层也是一发一收的.意味着客户端给服务器说了"How are you" , 服务器中程序处理过请求后也会给客户端返回一个"Fine,thank you" , 那么这个时候ACK就可以搭顺风车,和服务器回应的"Fine, thank you" 一起返回给客户端

上述ACK是内核收到数据报后直接返回的,Fine....是应用程序,通过write写的数据,通过一系列代码执行到才返回,这俩时机本来是不同的.但是延时应答,使此时的ACK 就可能稍等一会再发送就很有可能和response 合并成一个数据报.四次挥手,有可能是三次挥手,就是捎带应答起到的效果.


2.2 粘包问题

在TCP协议头中,没有如同UDP一样的“报文长度”这样的字段,但是有一个序号这样的字段,站在传输层的角度,TCP是一个一个报文过来的。按照序号放在缓冲区中。站在应用层的角度,看到的只是一串连续的字节数据。那么应用程序看到了这么一连串的字节数据,就不知道从哪个部分开始到哪个部分结束,是一个完整的数据包。


如何解决粘包问题?归根结底就是一句话,明确两个包之间的边界。


• 对于定长的包,保证每次都按照固定大小读取即可;例如上面的Request结构,是固定大小的,那么就从缓冲区从头开始按sizeof(Request) 依次读取即可


• 对于变长的包,可以定义分隔符,来区分包(应用层协议,是程序员自己来定的,只要定义保证分隔符不和正文冲突即可)


• 对于变长的包,还可以在包头的位置,约定一个包总长读的字段,从而知道了包的结束位置


对于UDP协议来说,是否也存在“粘包问题”?


• 对于UDP,如果还没有上层交付数据,UDP的报文长度仍然在。同时,UDP是一个一个把数据交付给应用层。就有很明确的数据边界。


•  站在应用层的角度,使用DUP的时候,要么收到完整的UDP报文,要么不收,不会出现“半个”的情况。

2.3 TCP异常情况

2.3.1 进程关闭/进程崩溃

进程没了,socket 是文件,随之被关闭,虽然进程没了,但是连接还在,仍然可以继续四次挥手

2.3.2 主机关机(正常流程关机)

先杀死所有的用户进程,然后就和进程关闭一样。

虽然可以出发四次挥手,如果能够在关闭之前完成更好。

如果没有发完,比如,对方发的 fin 过来了,咱们没来得及ack就关机了,此时对端就会重传fin,重传几次之后,发现都没有ack,尝试重置连接,如果还不行,就直接释放连接。

2.3.3 主机掉电(把电源)

瞬间机器就关了,来不及进行任何挥手操作。此时分两种情况:

1)对端是发送端

对端就会收不到ack=>超时重传=>重置连接=>释放连接

2)对端是接收端

对端是没法立即知道,你这边是还没来得及发新的数据,还是直接没了。即使发送端没有写入操作,TCP自己也内置了一个保活机制“心跳包”。虽然是接收端,但是接收端会定期给发送端发送一个心跳包(ping),正常情况下就会返回一个(pong),如果每个 ping 都有及时的 pong,这个时候就说明当前对端的状态良好,如果 ping 过去之后,没用 pong ,说明心跳没了,这边怕是打概率挂了(pong也有概率丢的,因此会连续几次都丢了才会判定连接断开)。


注:发送方也是有心跳包的,但是通过对方返回的ack来判定会更快一些。

相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
相关文章
|
3月前
|
机器学习/深度学习 存储 算法
NoProp:无需反向传播,基于去噪原理的非全局梯度传播神经网络训练,可大幅降低内存消耗
反向传播算法虽是深度学习基石,但面临内存消耗大和并行扩展受限的问题。近期,牛津大学等机构提出NoProp方法,通过扩散模型概念,将训练重塑为分层去噪任务,无需全局前向或反向传播。NoProp包含三种变体(DT、CT、FM),具备低内存占用与高效训练优势,在CIFAR-10等数据集上达到与传统方法相当的性能。其层间解耦特性支持分布式并行训练,为无梯度深度学习提供了新方向。
138 1
NoProp:无需反向传播,基于去噪原理的非全局梯度传播神经网络训练,可大幅降低内存消耗
|
2月前
|
监控 应用服务中间件 Linux
掌握并发模型:深度揭露网络IO复用并发模型的原理。
总结,网络 I/O 复用并发模型通过实现非阻塞 I/O、引入 I/O 复用技术如 select、poll 和 epoll,以及采用 Reactor 模式等技巧,为多任务并发提供了有效的解决方案。这样的模型有效提高了系统资源利用率,以及保证了并发任务的高效执行。在现实中,这种模型在许多网络应用程序和分布式系统中都取得了很好的应用成果。
96 35
|
2月前
|
机器学习/深度学习 算法 测试技术
图神经网络在信息检索重排序中的应用:原理、架构与Python代码解析
本文探讨了基于图的重排序方法在信息检索领域的应用与前景。传统两阶段检索架构中,初始检索速度快但结果可能含噪声,重排序阶段通过强大语言模型提升精度,但仍面临复杂需求挑战
89 0
图神经网络在信息检索重排序中的应用:原理、架构与Python代码解析
|
3月前
|
网络协议 Java 开发工具
全平台开源即时通讯IM框架MobileIMSDK:7端+TCP/UDP/WebSocket协议,鸿蒙NEXT端已发布,5.7K Stars
全平台开源即时通讯IM框架MobileIMSDK:7端+TCP/UDP/WebSocket协议,鸿蒙NEXT端已发布,5.7K Stars
190 1
|
4月前
|
网络协议 物联网
VB6网络通信软件上位机开发,TCP网络通信,读写数据并处理,完整源码下载
本文介绍使用VB6开发网络通信上位机客户端程序,涵盖Winsock控件的引入与使用,包括连接服务端、发送数据(如通过`Winsock1.SendData`方法)及接收数据(利用`Winsock1_DataArrival`事件)。代码实现TCP网络通信,可读写并处理16进制数据,适用于自动化和工业控制领域。提供完整源码下载,适合学习VB6网络程序开发。 下载链接:[完整源码](http://xzios.cn:86/WJGL/DownLoadDetial?Id=20)
143 12
|
4月前
|
机器学习/深度学习 数据可视化 PyTorch
深入解析图神经网络注意力机制:数学原理与可视化实现
本文深入解析了图神经网络(GNNs)中自注意力机制的内部运作原理,通过可视化和数学推导揭示其工作机制。文章采用“位置-转移图”概念框架,并使用NumPy实现代码示例,逐步拆解自注意力层的计算过程。文中详细展示了从节点特征矩阵、邻接矩阵到生成注意力权重的具体步骤,并通过四个类(GAL1至GAL4)模拟了整个计算流程。最终,结合实际PyTorch Geometric库中的代码,对比分析了核心逻辑,为理解GNN自注意力机制提供了清晰的学习路径。
382 7
深入解析图神经网络注意力机制:数学原理与可视化实现
|
5月前
|
网络协议 算法 安全
Go语言的网络编程与TCP_UDP
Go语言由Google开发,旨在简单、高效和可扩展。本文深入探讨Go语言的网络编程,涵盖TCP/UDP的基本概念、核心算法(如滑动窗口、流量控制等)、最佳实践及应用场景。通过代码示例展示了TCP和UDP的实现,并讨论了其在HTTP、DNS等协议中的应用。最后,总结了Go语言网络编程的未来发展趋势与挑战,推荐了相关工具和资源。
132 5
|
5月前
|
网络协议 安全 网络安全
应用程序中的网络协议:原理、应用与挑战
网络协议是应用程序实现流畅运行和安全通信的基石。了解不同协议的特点和应用场景,以及它们面临的挑战和应对策略,对于开发者和用户都具有重要意义。在未来,随着技术的不断发展,网络协议也将不断优化和创新,为数字世界的发展提供更强大的支持。
155 1
|
5月前
|
网络协议 测试技术 Linux
Golang 实现轻量、快速的基于 Reactor 模式的非阻塞 TCP 网络库
gev 是一个基于 epoll 和 kqueue 实现的高性能事件循环库,适用于 Linux 和 macOS(Windows 暂不支持)。它支持多核多线程、动态扩容的 Ring Buffer 读写缓冲区、异步读写和 SO_REUSEPORT 端口重用。gev 使用少量 goroutine,监听连接并处理读写事件。性能测试显示其在不同配置下表现优异。安装命令:`go get -u github.com/Allenxuxu/gev`。
|
7月前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
180 17