说说TCP为什么需要三次握手和四次挥手? _

简介: TCP连接的建立需要三次握手,确保双方的接收和发送能力正常,而关闭连接则涉及四次挥手以确保数据传输完成。这个过程包括客户端发送SYN开始连接,服务器响应SYN并ACK,然后客户端再次ACK确认连接建立。终止连接时,客户端发送FIN,服务器回ACK,服务器发送FIN,最后客户端再发送ACK确认关闭。四次挥手的目的是防止已失效的连接请求报文突然传到服务器,导致不必要的资源消耗。

一、三次握手

三次握手(Three-way Handshake)其实就是指建立一个TCP连接时,需要客户端和服务器总共发送3个包

主要作用就是为了确认双方的接收能力和发送能力是否正常、指定自己的初始化序列号为后面的可靠性传送做准备

过程如下:

  • 第一次握手:客户端给服务端发一个 SYN 报文,并指明客户端的初始化序列号 ISN(c),此时客户端处于 SYN_SENT 状态
  • 第二次握手:服务器收到客户端的 SYN 报文之后,会以自己的 SYN 报文作为应答,为了确认客户端的 SYN,将客户端的 ISN+1作为ACK的值,此时服务器处于 SYN_RCVD 的状态
  • 第三次握手:客户端收到 SYN 报文之后,会发送一个 ACK 报文,值为服务器的ISN+1。此时客户端处于 ESTABLISHED 状态。服务器收到 ACK 报文之后,也处于 ESTABLISHED 状态,此时,双方已建立起了连接

上述每一次握手的作用如下:

  • 第一次握手:客户端发送网络包,服务端收到了 这样服务端就能得出结论:客户端的发送能力、服务端的接收能力是正常的。
  • 第二次握手:服务端发包,客户端收到了 这样客户端就能得出结论:服务端的接收、发送能力,客户端的接收、发送能力是正常的。不过此时服务器并不能确认客户端的接收能力是否正常
  • 第三次握手:客户端发包,服务端收到了。 这样服务端就能得出结论:客户端的接收、发送能力正常,服务器自己的发送、接收能力也正常

通过三次握手,就能确定双方的接收和发送能力是正常的。之后就可以正常通信了

为什么不是两次握手?

如果是两次握手,发送端可以确定自己发送的信息能对方能收到,也能确定对方发的包自己能收到,但接收端只能确定对方发的包自己能收到 无法确定自己发的包对方能收到

并且两次握手的话, 客户端有可能因为网络阻塞等原因会发送多个请求报文,延时到达的请求又会与服务器建立连接,浪费掉许多服务器的资源

二、四次挥手

tcp终止一个连接,需要经过四次挥手

过程如下:

  • 第一次挥手:客户端发送一个 FIN 报文,报文中会指定一个序列号。此时客户端处于 FIN_WAIT1 状态,停止发送数据,等待服务端的确认
  • 第二次挥手:服务端收到 FIN 之后,会发送 ACK 报文,且把客户端的序列号值 +1 作为 ACK 报文的序列号值,表明已经收到客户端的报文了,此时服务端处于 CLOSE_WAIT状态
  • 第三次挥手:如果服务端也想断开连接了,和客户端的第一次挥手一样,发给 FIN 报文,且指定一个序列号。此时服务端处于 LAST_ACK 的状态
  • 第四次挥手:客户端收到 FIN 之后,一样发送一个 ACK 报文作为应答,且把服务端的序列号值 +1 作为自己 ACK 报文的序列号值,此时客户端处于 TIME_WAIT状态。需要过一阵子以确保服务端收到自己的 ACK 报文之后才会进入 CLOSED 状态,服务端收到 ACK 报文之后,就处于关闭连接了,处于 CLOSED 状态

四次挥手原因

服务端在收到客户端断开连接Fin报文后,并不会立即关闭连接,而是先发送一个ACK包先告诉客户端收到关闭连接的请求,只有当服务器的所有报文发送完毕之后,才发送FIN报文断开连接,因此需要四次挥手

相关实践学习
深入解析Docker容器化技术
Docker是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux机器上,也可以实现虚拟化,容器是完全使用沙箱机制,相互之间不会有任何接口。Docker是世界领先的软件容器平台。开发人员利用Docker可以消除协作编码时“在我的机器上可正常工作”的问题。运维人员利用Docker可以在隔离容器中并行运行和管理应用,获得更好的计算密度。企业利用Docker可以构建敏捷的软件交付管道,以更快的速度、更高的安全性和可靠的信誉为Linux和Windows Server应用发布新功能。 在本套课程中,我们将全面的讲解Docker技术栈,从环境安装到容器、镜像操作以及生产环境如何部署开发的微服务应用。本课程由黑马程序员提供。     相关的阿里云产品:容器服务 ACK 容器服务 Kubernetes 版(简称 ACK)提供高性能可伸缩的容器应用管理能力,支持企业级容器化应用的全生命周期管理。整合阿里云虚拟化、存储、网络和安全能力,打造云端最佳容器化应用运行环境。 了解产品详情: https://www.aliyun.com/product/kubernetes
相关文章
|
算法 应用服务中间件 nginx
超越内存限制:深入探索内存池的工作原理与实现
这篇文章将深入探索内存池的工作原理与实现,介绍如何超越传统的内存限制。首先,我们将了解什么是内存池以及它与传统内存分配方式的不同之处。接着,我们将探索内存池的工作原理,包括内存池的数据结构和算法。我们还将解释内存池如何提升性能,避免内存碎片化,并减少内存分配的开销。此外,我们将介绍一些常见的内存池实现技术,例如固定大小内存池和动态大小内存池,并对比它们的优劣之处。
316 0
|
5月前
|
网络协议 算法 安全
TCP协议(三次握手、流量控制、拥塞控制)
TCP协议是一种可靠的传输层通信协议,通过三次握手建立连接,确保数据安全传输。流量控制通过接收窗口避免接收方缓冲区溢出,拥塞控制则利用拥塞窗口调节网络传输速度,防止网络拥堵。三者协同工作,保障TCP在复杂网络环境中实现高效、可靠的数据传输。
1693 11
|
消息中间件 缓存 NoSQL
谈谈高并发系统的设计方法论
设计 `高并发` 系统,就是要让该系统保证它 `整体可用` 的同时,能够尽可能多的 `处理很高的并发用户请求`,能够 `承受很大的负载流量冲击`。
1321 6
|
XML Java 测试技术
SpringBoot入门篇 01、Springboot入门及配置(二)
SpringBoot入门篇 01、Springboot入门及配置(二)
|
2月前
|
数据安全/隐私保护
阿里云无影云电脑如何开通使用?一文详解
一文读懂如何使用阿里云无影云电脑EDS?细数那些容易被忽视的操作,让无影云电脑产品更易理解和使用~
|
存储 编解码 数据处理
【FFmpeg 视频基本格式】深入理解FFmpeg:从YUV到PCM,解码到编码(二)
【FFmpeg 视频基本格式】深入理解FFmpeg:从YUV到PCM,解码到编码
407 0
|
6月前
|
存储 SQL 缓存
Apache Doris & SelectDB 技术能力全面解析
本文将对 Doris & SelectDB 适合的分析场景和技术能力进行概述解析
1055 1
Apache Doris & SelectDB 技术能力全面解析
|
10月前
|
网络协议 程序员
为什么TCP需要三次握手?一文讲透!
TCP三次握手是TCP协议建立连接的关键步骤,确保客户端和服务端同步状态并确认彼此的存在。过程分为三步:1) 客户端发送SYN包请求连接;2) 服务端回应SYN/ACK包确认收到并提供初始序列号;3) 客户端发送ACK包确认服务端的序列号,双方进入连接状态。此机制确保了双向通信的可靠性和资源的有效利用,避免了失效请求导致的问题。
|
7月前
|
人工智能 搜索推荐 IDE
MCP 是什么?一文看懂模型上下文协议
MCP(模型上下文协议)由Anthropic于2024年推出,旨在解决AI大模型的数据滞后问题,通过连接第三方数据源提升回答的时效性和相关性。传统联网搜索依赖公开信息,难以满足行业内部或定制化需求。MCP提供统一标准,使开发者能安全双向连接数据源与AI工具,简化集成流程。例如,Apifox MCP Server可将API文档作为数据源提供给支持MCP的IDE,助力智能代码生成。未来,MCP有望推动AI工具从封闭系统转向开放协作网络,显著提升开发效率与创新能力。