【JVM】双亲委派机制、打破双亲委派机制

简介: 【JVM】双亲委派机制、打破双亲委派机制

一、双亲委派机制

由于)va虚拟机中有多个类加载器,双亲委派机制的核心是解决一个类到底由谁加载的问题。

1.1 双亲委派的作用

  • 保证类加载的安全性:
  • 通过双亲委派机制避免恶意代码替换JDK中的核心类库,比如java.lang.String,确保核心类库的完整性和安全性。
  • 避免重复加载:
  • 双亲委派机制可以避免同一个类被多次加载。

1.2 什么是双亲委派机制

  • 双亲委派机制指的是:当一个类加载器接收到加载类的任务时,会自底向上查找是否加载过,再由顶向下进行加载。


假设在com.practice包下有一个类A.java,应用程序类加载器接收到一个任务,他要去加载A.java这个类,首先他会检查一下这个类有没有被加载过,发现没有被加载过,那么他就会把这个类委派给它的父类(扩展类加载器),扩展类加载器发现也没有加载过,继续向上委派,委派给它的父亲(启动类加载器),启动类加载器发现A.java曾经加载过,所以它直接把A.java类的class对象返回,加载过程结束。

如果所有的父类加载器都无法加载该类,则由当前类加载器自己尝试加载。所以看上去是自顶向下尝试加载。

假设在com.practice包下有一个类B.java,三个类加载器都没有加载过,此时会首先从顶部(启动类加载器)尝试进行加载,发现这个类不在当前类加载器的加载路径当中,就把这个任务委派给它的下级(扩展类记载器),此时刚好有这个类的加载路径,就会进行加载,而当应用类加载器要加载B.java时,首先还是对他的父类进行查找,判断是否加载过,加载过,则返回这个类的class对象

向下委派起到了一个加载优先级的作用

1.3 双亲委派机制问题

  • 重复的类:
  • 如果一个类重复出现在三个类加载器的加载位置,应该由谁来加载?

答案应该是启动类加载器加载,因为根据双亲委派机制,它的优先级是最高的

  • String类能覆盖吗
  • 在自己的项目中去创建一个java.lang.String类,会被加载吗

不能,会返回启动类加载器加载在rt.jar包中的String类

1.4 面试题(类的双亲委派机制是什么)

1、当一个类加载器去加载某个类的时候,会自底向上向父类查找是否加载过,如果加载过就直接返回,如果一直到最顶层的类加载器都没有加载,再由顶向下进行加载。

2、应用程序类加载器的父类加载器是扩展类加载器,扩展类加载器的父类加载器是启动类加载器。

3、双亲委派机制的好处有两点:第一是避免恶意代码替换DK中的核心类库,比如java.lang.String,确保核心类库的完整性和安全性。第二是避免一个类重复地被加载

二、打破双亲委派机制

2.1 自定义类加载器

  • 双亲委派机制的核心代码(源码):
protected Class<?> loadClass(String name, boolean resolve)
        throws ClassNotFoundException
    {
        synchronized (getClassLoadingLock(name)) {
            // First, check if the class has already been loaded
            Class<?> c = findLoadedClass(name);
            if (c == null) {
                long t0 = System.nanoTime();
                try {
                    if (parent != null) {
                        c = parent.loadClass(name, false);
                    } else {
                        c = findBootstrapClassOrNull(name);
                    }
                } catch (ClassNotFoundException e) {
                    // ClassNotFoundException thrown if class not found
                    // from the non-null parent class loader
                }
                if (c == null) {
                    // If still not found, then invoke findClass in order
                    // to find the class.
                    long t1 = System.nanoTime();
                    c = findClass(name);
                    // this is the defining class loader; record the stats
                    sun.misc.PerfCounter.getParentDelegationTime().addTime(t1 - t0);
                    sun.misc.PerfCounter.getFindClassTime().addElapsedTimeFrom(t1);
                    sun.misc.PerfCounter.getFindClasses().increment();
                }
            }
            if (resolve) {
                resolveClass(c);
            }
            return c;
        }
    }
  • 自定义类加载器:
public class BreakClassLoader1 extends ClassLoader {
    private String basePath;
    private final static String FILE_EXT = ".class";
    public void setBasePath(String basePath) {
        this.basePath = basePath;
    }
    private byte[] loadClassDate(String name) throws IOException {
        String path = basePath + File.separatorChar + name.replace('.', File.separatorChar) + FILE_EXT; // 将包名转换为文件路径
        InputStream is = null;
        ByteArrayOutputStream baos = null;
        try {
            is = new FileInputStream(path);
            baos = new ByteArrayOutputStream();
            int bufferSize = 4096;
            byte[] buffer = new byte[bufferSize];
            int bytesNumRead = 0;
            while ((bytesNumRead = is.read(buffer)) != -1) {
                baos.write(buffer, 0, bytesNumRead);
            }
            return baos.toByteArray();
        } catch (IOException e) {
            e.printStackTrace();
        } finally {
            try {
                if (is != null) {
                    is.close();
                }
                if (baos != null) {
                    baos.close();
                }
            } catch (IOException e) {
                e.printStackTrace();
            }
        }
        return null;
    }
    @Override
    protected Class<?> findClass(String name) throws ClassNotFoundException {
        byte[] classDate = new byte[0];
        try {
            classDate = loadClassDate(name);
        } catch (IOException e) {
            e.printStackTrace();
        }
        if (classDate == null) {
            throw new ClassNotFoundException();
        } else {
            return defineClass(name,classDate,0,classDate.length);
        }
    }
  public static void main(String[] args) throws ClassNotFoundException, InstantiationException, IllegalAccessException {
        BreakClassLoader1 classLoader1 = new BreakClassLoader1();
        classLoader1.setBasePath("D:\\lib\\");
        Class<?> clazz1 = classLoader1.loadClass("com.practice.Student");
        clazz1.newInstance();
        System.out.println(clazz1.getClassLoader());
    }
}


相关文章
|
1月前
|
存储 缓存 Java
金石原创 |【JVM盲点补漏系列】「并发编程的难题和挑战」深入理解JMM及JVM内存模型知识体系机制(1)
金石原创 |【JVM盲点补漏系列】「并发编程的难题和挑战」深入理解JMM及JVM内存模型知识体系机制(1)
48 1
|
8月前
|
Java 开发者 容器
【面试题精讲】JVM-打破双亲委派机制-OSGI模块化
【面试题精讲】JVM-打破双亲委派机制-OSGI模块化
|
8月前
|
安全 Java 编译器
java------JVM之类加载和双亲委派机制
java------JVM之类加载和双亲委派机制
|
9月前
|
前端开发 安全 Java
JVM类加载和双亲委派机制
JVM类加载和双亲委派机制
113 0
|
30天前
|
Java 关系型数据库 MySQL
【JVM】JDBC案例打破双亲委派机制
【JVM】JDBC案例打破双亲委派机制
28 4
|
1月前
|
Java 程序员 Python
JVM的垃圾回收机制(GC机制)
Java的JVM实行自动垃圾回收机制(GC),主要针对堆中的对象。当对象无引用可达时,被视为垃圾。垃圾回收包含“找垃圾”和“回收垃圾”两步。找垃圾通过引用计数(非Java使用)和可达性分析(Java使用)来识别无用对象。可达性分析从根对象开始遍历,未被标记的对象视为垃圾。回收垃圾常用标记清除方法,但可能导致内存碎片。此过程消耗资源,且碎片化影响内存分配效率。
24 1
|
1月前
|
监控 Java 关系型数据库
JVM工作原理与实战(十三):打破双亲委派机制-线程上下文类加载器
JVM作为Java程序的运行环境,其负责解释和执行字节码,管理内存,确保安全,支持多线程和提供性能监控工具,以及确保程序的跨平台运行。本文主要介绍了打破双亲委派机制的方法、线程上下文类加载器等内容。
44 2
|
1月前
|
监控 安全 前端开发
JVM工作原理与实战(十二):打破双亲委派机制-自定义类加载器
JVM作为Java程序的运行环境,其负责解释和执行字节码,管理内存,确保安全,支持多线程和提供性能监控工具,以及确保程序的跨平台运行。本文主要介绍了打破双亲委派机制的方法、自定义类加载器等内容。
27 1
|
1月前
|
监控 前端开发 安全
JVM工作原理与实战(十一):双亲委派机制
JVM作为Java程序的运行环境,其负责解释和执行字节码,管理内存,确保安全,支持多线程和提供性能监控工具,以及确保程序的跨平台运行。本文主要介绍了双亲委派机制、父类加载器、双亲委派机制的主要作用、双亲委派机制常见问题等内容。
20 1
|
1月前
|
前端开发 Java 开发者
JVM类加载器的分类以及双亲委派机制
JVM类加载器的分类以及双亲委派机制