机器精度

简介: Julia 的 eps 函数显示了浮点数的机器精度,即最小可表示的非零差距。对于 Float32,它是 2.0^-23,对于 Float64,则为 2.0^-52。eps(x) 返回 x 到下一个浮点数的距离,间距在数轴上随数值大小变化,零点附近最密。此外,nextfloat 和 prevfloat 函数用于获取给定值之后或之前的浮点数,展示了相邻浮点数的二进制表示也相邻。

机器精度

大多数实数都无法用浮点数准确地表示,因此有必要知道两个相邻可表示的浮点数间的距离,它通常被叫做机器精度。

Julia 提供了 eps 函数,它可以给出 1.0 与下一个 Julia 能表示的浮点数之间的差值:

实例
julia> eps(Float32)
1.1920929f-7

julia> eps(Float64)
2.220446049250313e-16

julia> eps() # 与 eps(Float64) 相同
2.220446049250313e-16
这些值分别是 Float32 中的 2.0^-23 和 Float64 中的 2.0^-52。eps 函数也可以接受一个浮点值作为参数,然后给出这个值与下一个可表示的浮点数值之间的绝对差。也就是说,eps(x) 产生一个和 x 类型相同的值,并且 x + eps(x) 恰好是比 x 更大的下一个可表示的浮点值:

实例
julia> eps(1.0)
2.220446049250313e-16

julia> eps(1000.)
1.1368683772161603e-13

julia> eps(1e-27)
1.793662034335766e-43

julia> eps(0.0)
5.0e-324
两个相邻可表示的浮点数之间的距离并不是常数,数值越小,间距越小,数值越大,间距越大。换句话说,可表示的浮点数在实数轴上的零点附近最稠密,并沿着远离零点的方向以指数型的速度变得越来越稀疏。根据定义,eps(1.0) 与 eps(Float64) 相等,因为 1.0 是个 64 位浮点值。

Julia 也提供了 nextfloat 和 prevfloat 两个函数分别返回基于参数的下一个更大或更小的可表示的浮点数:

实例
julia> x = 1.25f0
1.25f0

julia> nextfloat(x)
1.2500001f0

julia> prevfloat(x)
1.2499999f0

julia> bitstring(prevfloat(x))
"00111111100111111111111111111111"

julia> bitstring(x)
"00111111101000000000000000000000"

julia> bitstring(nextfloat(x))
"00111111101000000000000000000001"
这个例子体现了一般原则,即相邻可表示的浮点数也有着相邻的二进制整数表示。

相关文章
机器精度
Julia 的 `eps` 函数用于计算浮点数的机器精度,即相邻可表示浮点数间的距离。例如,`eps(Float32)` 为 `1.1920929f-7`,`eps(Float64)` 为 `2.220446049250313e-16`。`eps(x)` 返回 `x` 与下一个浮点数的差值,`nextfloat` 和 `prevfloat` 函数则返回给定值的相邻浮点数。浮点间距在数值大小变化中不是常数,靠近零时更密集,远离零时变稀疏。
|
29天前
LabVIEW为什么浮点数会丢失精度
LabVIEW为什么浮点数会丢失精度
12 2
|
29天前
|
机器学习/深度学习 人工智能
SalUn:基于梯度权重显著性的机器反学习方法,实现图像分类和生成的精确反学习
【4月更文挑战第29天】SalUn是一种新的机器反学习方法,专注于图像分类和生成的精确反学习。通过关注权重的梯度显著性,SalUn能更准确、高效地从模型中移除特定数据影响,提高反学习精度并保持稳定性。适用于多种任务,包括图像生成,且在条件扩散模型中表现优越。但计算权重梯度的需求可能限制其在大规模模型的应用,且在数据高度相关时效果可能不理想。[链接](https://arxiv.org/abs/2310.12508)
20 1
|
11月前
|
数据采集 监控 定位技术
【状态估计】基于增强数值稳定性的无迹卡尔曼滤波多机电力系统动态状态估计(Matlab代码实现)
【状态估计】基于增强数值稳定性的无迹卡尔曼滤波多机电力系统动态状态估计(Matlab代码实现)
|
PyTorch 算法框架/工具
在pytorch中,模型权重的精度会影响模型在cpu上的推理速度吗?
在用pytorch训练模型时发现,模型训练的eopch越多,保存模型时模型权重的精度越好,模型在cpu上的推理的速度越慢,是因为模型权重精度会影响推理速度吗?如何调整pytorch模型参数的精度?
457 0
|
算法 调度
m基于NSGAII的多机器多任务调度排序优化matlab仿真,考虑机器任务完成时间、机器总负荷和最大负荷
m基于NSGAII的多机器多任务调度排序优化matlab仿真,考虑机器任务完成时间、机器总负荷和最大负荷
83 0
m基于NSGAII的多机器多任务调度排序优化matlab仿真,考虑机器任务完成时间、机器总负荷和最大负荷
|
算法
m最小二乘法自适应均衡误码率仿真,对比LS,DEF以及LMMSE三种均衡算法误码率
m最小二乘法自适应均衡误码率仿真,对比LS,DEF以及LMMSE三种均衡算法误码率
185 0
m最小二乘法自适应均衡误码率仿真,对比LS,DEF以及LMMSE三种均衡算法误码率
|
算法
【计组】32位浮点数的表示范围以及如何解决精度缺失
【计组】32位浮点数的表示范围以及如何解决精度缺失
389 0
【计组】32位浮点数的表示范围以及如何解决精度缺失
终端加负载的无损耗传输线重要参数的推导
终端加负载的无损耗传输线重要参数的推导
100 0
终端加负载的无损耗传输线重要参数的推导

热门文章

最新文章