机器精度

简介: Julia 的 eps 函数显示了浮点数的机器精度,即最小可表示的非零差距。对于 Float32,它是 2.0^-23,对于 Float64,则为 2.0^-52。eps(x) 返回 x 到下一个浮点数的距离,间距在数轴上随数值大小变化,零点附近最密。此外,nextfloat 和 prevfloat 函数用于获取给定值之后或之前的浮点数,展示了相邻浮点数的二进制表示也相邻。

机器精度

大多数实数都无法用浮点数准确地表示,因此有必要知道两个相邻可表示的浮点数间的距离,它通常被叫做机器精度。

Julia 提供了 eps 函数,它可以给出 1.0 与下一个 Julia 能表示的浮点数之间的差值:

实例
julia> eps(Float32)
1.1920929f-7

julia> eps(Float64)
2.220446049250313e-16

julia> eps() # 与 eps(Float64) 相同
2.220446049250313e-16
这些值分别是 Float32 中的 2.0^-23 和 Float64 中的 2.0^-52。eps 函数也可以接受一个浮点值作为参数,然后给出这个值与下一个可表示的浮点数值之间的绝对差。也就是说,eps(x) 产生一个和 x 类型相同的值,并且 x + eps(x) 恰好是比 x 更大的下一个可表示的浮点值:

实例
julia> eps(1.0)
2.220446049250313e-16

julia> eps(1000.)
1.1368683772161603e-13

julia> eps(1e-27)
1.793662034335766e-43

julia> eps(0.0)
5.0e-324
两个相邻可表示的浮点数之间的距离并不是常数,数值越小,间距越小,数值越大,间距越大。换句话说,可表示的浮点数在实数轴上的零点附近最稠密,并沿着远离零点的方向以指数型的速度变得越来越稀疏。根据定义,eps(1.0) 与 eps(Float64) 相等,因为 1.0 是个 64 位浮点值。

Julia 也提供了 nextfloat 和 prevfloat 两个函数分别返回基于参数的下一个更大或更小的可表示的浮点数:

实例
julia> x = 1.25f0
1.25f0

julia> nextfloat(x)
1.2500001f0

julia> prevfloat(x)
1.2499999f0

julia> bitstring(prevfloat(x))
"00111111100111111111111111111111"

julia> bitstring(x)
"00111111101000000000000000000000"

julia> bitstring(nextfloat(x))
"00111111101000000000000000000001"
这个例子体现了一般原则,即相邻可表示的浮点数也有着相邻的二进制整数表示。

相关文章
|
8月前
|
机器学习/深度学习 存储 PyTorch
【AMP实操】解放你的GPU运行内存!在pytorch中使用自动混合精度训练
【AMP实操】解放你的GPU运行内存!在pytorch中使用自动混合精度训练
290 0
机器精度
Julia 的 `eps` 函数用于计算浮点数的机器精度,即相邻可表示浮点数间的距离。例如,`eps(Float32)` 为 `1.1920929f-7`,`eps(Float64)` 为 `2.220446049250313e-16`。`eps(x)` 返回 `x` 与下一个浮点数的差值,`nextfloat` 和 `prevfloat` 函数则返回给定值的相邻浮点数。浮点间距在数轴上非均匀分布,靠近零的区域更密集。
|
8月前
15.求函数:sin(x)=x/1! - x3/3! + x5/5! -x7/7! +…,最后一项精度不低于0.000001
15.求函数:sin(x)=x/1! - x3/3! + x5/5! -x7/7! +…,最后一项精度不低于0.000001
38 4
|
8月前
LabVIEW为什么浮点数会丢失精度
LabVIEW为什么浮点数会丢失精度
75 2
|
数据采集 缓存 算法
m基于多属性决策判决算法的异构网络垂直切换matlab性能仿真,对比网络吞吐量,网络负载,平均切换次数,阻塞率,回报值
m基于多属性决策判决算法的异构网络垂直切换matlab性能仿真,对比网络吞吐量,网络负载,平均切换次数,阻塞率,回报值
220 0
|
数据采集 数据可视化 数据挖掘
使用Sentieon BWA-Meth进行WGBS甲基化分析,速度和精度双提升
在甲基化分析中,Sentieon软件可以与其他工具结合使用以提高分析速度和准确性。在这种情况下,Sentieon BWA被用来替换原始的BWA-mem,与MethyDackel结合,建立起Sentieon BWA-Meth流程。 在这个流程中,Sentieon BWA首先负责处理亚硫酸盐转化后的测序数据进行高效的序列比对。由于Sentieon BWA的优化,比对速度和准确性得到了提高,同时减少了计算资源的消耗。
559 0
使用Sentieon BWA-Meth进行WGBS甲基化分析,速度和精度双提升
|
算法 调度
m基于NSGAII的多机器多任务调度排序优化matlab仿真,考虑机器任务完成时间、机器总负荷和最大负荷
m基于NSGAII的多机器多任务调度排序优化matlab仿真,考虑机器任务完成时间、机器总负荷和最大负荷
119 0
m基于NSGAII的多机器多任务调度排序优化matlab仿真,考虑机器任务完成时间、机器总负荷和最大负荷
|
算法
【计组】32位浮点数的表示范围以及如何解决精度缺失
【计组】32位浮点数的表示范围以及如何解决精度缺失
551 0
【计组】32位浮点数的表示范围以及如何解决精度缺失
终端加负载的无损耗传输线重要参数的推导
终端加负载的无损耗传输线重要参数的推导
146 0
终端加负载的无损耗传输线重要参数的推导