如何优化大表的查询速度?

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云原生数据库 PolarDB MySQL 版,Serverless 5000PCU 100GB
云数据库 Redis 版,社区版 2GB
推荐场景:
搭建游戏排行榜
简介: 本文介绍了优化大数据表查询速度的方法。关键点包括:1) 创建索引以加快查询;2) 优化查询语句,避免全表扫描;3) 使用缓存来提高查询效率,利用内存访问速度快和IO操作少的优势;4) 提升硬件配置,如使用固态硬盘和增加内存;5) 数据归档和分离,减少主表数据量;6) 实施数据库分片,如分库分表技术,以分散数据并提高并发性能。分库分表包括只分库、只分表(横向和纵向)以及两者结合,常见的分库分表中间件有ShardingSphere、MyCAT、TDDL和Vitess。这些策略通常结合使用,以应对大数据量查询的挑战。

1.如何优化查询速度?

所谓的“大表”指的是一张表中有大量的数据,而通常情况下数据量越多,那么也就意味着查询速度越慢。这是因为当数据量增多时,那么查询一个数据需要匹配和检索的内容也就越多,而检索的项目越多,那么查询速度也就越慢。

举个例子,比如当家里只有一个孩子的时候,可能一个月的花销不算太大,但是随着家里的孩子越来越多,那么这个家庭的花销也就越来越大是一样的,而表中的数据量和查询效率的关系也是如此。

那问题来了,怎么优化查询速度呢?

这个问题的主要优化方案有以下几个。

1.1 创建适当的索引

通过创建适当的索引,可以加速查询操作。索引可以提高查询语句的执行效率,尤其是对于常用的查询条件和排序字段进行索引,可以显著减少查询的扫描范围和 IO 开销。

1.2 优化查询语句

优化查询语句本身,避免全表扫描和大数据量的关联查询。可以优化查询条件,使用合适的索引、合理的查询策略,减少不必要的字段和数据返回。

1.3 缓存查询结果

对于一些相对稳定的查询结果,可以将其缓存在内存中,避免重复查询数据库,提高查询速度。

缓存的查询速度一定比直接查询数据库的效率高,这是因为缓存具备以下特征:

  1. 内存访问速度快:缓存通常将数据存储在内存中,而数据库将数据存储在磁盘上。相比于磁盘访问,内存访问速度更快,可以达到纳秒级别的读取速度,远远快于数据库的毫秒级别的读取速度。
  2. IO 操作次数少:数据库通常需要进行磁盘 IO 操作,包括读取和写入磁盘数据。而缓存将数据存储在内存中,避免了磁盘 IO 的开销。内存访问不需要进行磁盘寻址和机械运动,相对来说速度更快。
  3. 特殊的数据结构:缓存的数据结构通常为 key-value 形式的,也就是说缓存可以做到任何数据量级下的查询数据复杂度为 O(1),所以它的查询效率是非常高的;而数据库采用的是传统数据结构设计,可能需要查询二叉树、或全文搜索、或回表查询等操作,所以其查询性能是远低于缓存系统的。

1.4 提升硬件配置

对于大数据量的表,可以考虑采用更高性能的硬件设备,如更快的存储介质(如固态硬盘),更大的内存容量等,以提升查询的 IO 性能。

1.5 数据归档和分离

对于历史数据或不经常访问的数据,可以进行归档和分离,将这些数据从主表中独立出来,减少主表的数据量,提高查询速度。

1.6 数据库分片

当单个数据库无法满足查询性能需求时,可以考虑使用数据库分片技术,将数据分散到多个数据库中,每个数据库只处理部分数据,从而提高查询的并发度和整体性能。

数据库分片技术的具体实现是分库分表

2.何为分库分表?

首先来说,分库分表是一组技术,而不是一个单一的技术,分库分表可以分为以下几种情况:

  1. 只分库:将一个大数据库分为 N 个小数据库。例如将一个电商数据库,分为多个数据库,如:用户数据库、仓库数据库、订单数据库、商品数据库等。
  2. 只分表:在一个数据库中,将一张表拆分成多张表,而分表又有以下两种实现:
  1. 横向拆分:不修改原有的表结构,将原本一张表中的数据,分成 N 个表来存储数据。
  2. 纵向拆分:修改原有的表结构,将常用的字段放到主表中,将不常用的和查询效率低的字段放到扩展表中。
  1. 既分库又分表:它的实现最复杂,顾名思义,它是将一个数据库拆分成多个数据库,并将一个数据库的一张表,同时有拆分为多张表。

2.分库分表的实现

目前市面上分库分表的主要实现技术有以下几个:

  1. ShardingSphere:ShardingSphere 是一个功能丰富的开源分布式数据库中间件,提供了完整的分库分表解决方案。它支持主流关系型数据库(如 MySQL、Oracle、SQL Server 等),提供了分片、分布式事务、读写分离、数据治理等功能。ShardingSphere 具有灵活的配置和扩展性,支持多种分片策略,使用简单方便
  2. MyCAT:MyCAT(MySQL Clustering and Advancement Toolkit)是一个开源的分布式数据库中间件,特别适合于大规模的分库分表应用。它支持 MySQ L和 MycatSQL,提供了分片、读写分离、分布式事务等功能。MyCAT 具有高性能、高可用性、可扩展性和易用性的特点,广泛应用于各种大型互联网和电商平台
  3. TDDL:TDDL(Taobao Distributed Data Layer)是阿里巴巴开源的分库分表中间件。它为开发者提供了透明的分库分表解决方案,可以将数据按照指定的规则分布到不同的数据库和表中。TDDL 支持 MyISAM 和 InnoDB 引擎,提供了读写分离、动态扩容、数据迁移等功能
  4. Vitess:Vitess 是一个由 YouTube 开发和维护的分布式数据库集群中间件,支持 MySQL 作为后端存储系统。Vitess 提供了水平拆分、弹性缩放、负载均衡、故障恢复等功能,可以在大规模的数据集和高并发访问场景下提供高性能和可扩展

小结

大数据量的表的查询优化方案有很多,例如:创建索引、优化查询语句、缓存查询结果、提升硬件配置、数据归档和分离,以及数据分片技术(分库分表)等,而这些技术通常是一起配合使用,来共同解决大数据量表的查询速度慢的问题的,其中分库分表的实现最为复杂,所以需要根据自身业务的需要酌情使用。


转载来源:https://juejin.cn/post/7307467803975761971

相关实践学习
基于CentOS快速搭建LAMP环境
本教程介绍如何搭建LAMP环境,其中LAMP分别代表Linux、Apache、MySQL和PHP。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
11月前
|
存储 SQL 关系型数据库
大数据量下数据库分页查询优化方案汇总
当需要从数据库查询的表有上万条记录的时候,一次性查询所有结果会变得很慢,特别是随着数据量的增加特别明显,这时需要使用分页查询。对于数据库分页查询,也有很多种方法和优化的点。下面简单说一下我知道的一些方法。
377 2
|
3天前
|
SQL 数据处理 数据库
如何进行SQL查询优化?
【6月更文挑战第16天】如何进行SQL查询优化?
10 3
|
14天前
|
存储 关系型数据库 MySQL
Mysql查询优化
Mysql查询优化
15 1
|
8月前
|
SQL 关系型数据库 MySQL
MySQL 大表如何优化查询效率?
MySQL 大表如何优化查询效率?
87 0
|
缓存 负载均衡 关系型数据库
mysql查询优化
mysql查询优化
54 0
|
SQL 关系型数据库 MySQL
MySQL查询优化
学习使用
87 0
MySQL查询优化
|
SQL 存储 关系型数据库
MySQL查询优化必备
查询优化本就不是一蹴而就的,需要学会使用对应的工具、借鉴别人的经验来对SQL进行优化,并且提升自己。
121 0
MySQL查询优化必备
|
存储 机器学习/深度学习 缓存
|
存储 SQL 缓存
MySQL查询优化(中)
SQL优化 show status 了解各种SQL的执行效率:
185 0
MySQL查询优化(中)