c++算法学习笔记 (11) 离散化

简介: c++算法学习笔记 (11) 离散化

1.前置知识:

unique是 c++标准模板库STL中十分实用的函数之一,使用此函数需要#include <algorithm>头文件

该函数的作用是“去除”容器或者数组中相邻元素的重复出现的元素。

(1) 这里的去除并非真正意义的erase,而是将重复的元素放到容器的末尾返回值是去重之后的尾地址

(2) unique针对的是相邻元素,所以对于顺序顺序错乱的数组成员,或者容器成员,需要先进行排序,可以调用std::sort()函数

unique的实现:(使用双指针)

00ee312aebe445249be4ea153da2cd68.jpg

其中,i遍历原数组,j为不重复数的下标。当i为第一个元素 or a[i]!=a[i-1]时,将a[i]存入a[j],j++。

(最后将不重复的数全部存到a[0]~a[j-1]中,a[j]以后的数不用管)

2.例题:区间和

假定有一个无限长的数轴,数轴上每个坐标上的数都是 0。

现在,我们首先进行 n 次操作,每次操作将某一位置 x 上的数加 c。

接下来,进行 m 次询问,每个询问包含两个整数 l 和 r,你需要求出在区间 [l,r] 之间的所有数的和。

输入格式

第一行包含两个整数 n 和 m。

接下来 n 行,每行包含两个整数 x 和 c。

再接下来 m 行,每行包含两个整数 l 和 r。

输出格式

共 m 行,每行输出一个询问中所求的区间内数字和。

数据范围

−10^9≤x≤10^9

1≤n,m≤10^5

−10^9≤l≤r≤10^9

−10000≤c≤10000

输入样例:
3 3
1 2
3 6
7 5
1 3
4 6
7 8


输出样例:
8
0
5


#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
const int N = 300010;
int n, m;
int a[N], s[N];                     // a:存离散化后的数 s:存a的前缀和
vector<int> alls;                   // 存原数x
vector<pair<int, int>> adds, query; // 存x,c   l,r
int find(int x)
{
    int l = 0, r = alls.size() - 1;
    while (l < r)
    {
        int mid = (l + r) / 2;
        if (alls[mid] >= x)
            r = mid;
        else
            l = mid + 1;
    }
    return r + 1; // 映射到从1开始的下标
}
int main()
{
    cin >> n >> m;
    for (int i = 0; i < n; i++)
    {
        int x, c;
        cin >> x >> c;
        adds.push_back({x, c}); // x位置+c
        alls.push_back(x);
    }
    for (int i = 0; i < m; i++)
    {
        int l, r;
        cin >> l >> r;
        query.push_back({l, r});
        alls.push_back(l);
        alls.push_back(r);
    }
    // 去重
    sort(alls.begin(), alls.end());
    alls.erase(unique(alls.begin(), alls.end()), alls.end());
    for (auto it : adds)
    {
        int x = find(it.first);
        a[x] += it.second; // a[]:离散化后
    }
    // 预处理前缀和
    for (int i = 1; i <= alls.size(); i++) // 映射到1~alls.size()
    {
        s[i] = s[i - 1] + a[i];
    }
    for (auto it : query)
    {                                                // 处理询问
        int l = find(it.first), r = find(it.second); // 取离散化之后的l和r
        cout << s[r] - s[l - 1] << endl;
    }
    return 0;
}


相关文章
|
9月前
|
存储 监控 算法
基于 C++ 哈希表算法实现局域网监控电脑屏幕的数据加速机制研究
企业网络安全与办公管理需求日益复杂的学术语境下,局域网监控电脑屏幕作为保障信息安全、规范员工操作的重要手段,已然成为网络安全领域的关键研究对象。其作用类似网络空间中的 “电子眼”,实时捕获每台电脑屏幕上的操作动态。然而,面对海量监控数据,实现高效数据存储与快速检索,已成为提升监控系统性能的核心挑战。本文聚焦于 C++ 语言中的哈希表算法,深入探究其如何成为局域网监控电脑屏幕数据处理的 “加速引擎”,并通过详尽的代码示例,展现其强大功能与应用价值。
199 2
|
10月前
|
存储 算法 C++
Windows共享文件:探秘C++实现的B树索引算法奇境
在数字化时代,Windows共享文件的高效管理至关重要。B树算法以其自平衡多路搜索特性,在文件索引与存储优化中表现出色。本文探讨B树在Windows共享文件中的应用,通过C++实现具体代码,展示其构建文件索引、优化数据存储的能力,提升文件检索效率。B树通过减少磁盘I/O操作,确保查询高效,为企业和个人提供流畅的文件共享体验。
|
9月前
|
监控 算法 数据处理
基于 C++ 的 KD 树算法在监控局域网屏幕中的理论剖析与工程实践研究
本文探讨了KD树在局域网屏幕监控中的应用,通过C++实现其构建与查询功能,显著提升多维数据处理效率。KD树作为一种二叉空间划分结构,适用于屏幕图像特征匹配、异常画面检测及数据压缩传输优化等场景。相比传统方法,基于KD树的方案检索效率提升2-3个数量级,但高维数据退化和动态更新等问题仍需进一步研究。未来可通过融合其他数据结构、引入深度学习及开发增量式更新算法等方式优化性能。
221 17
|
8月前
|
存储 机器学习/深度学习 算法
基于 C++ 的局域网访问控制列表(ACL)实现及局域网限制上网软件算法研究
本文探讨局域网限制上网软件中访问控制列表(ACL)的应用,分析其通过规则匹配管理网络资源访问的核心机制。基于C++实现ACL算法原型,展示其灵活性与安全性。文中强调ACL在企业与教育场景下的重要作用,并提出性能优化及结合机器学习等未来研究方向。
212 4
|
7月前
|
存储 监控 算法
基于跳表数据结构的企业局域网监控异常连接实时检测 C++ 算法研究
跳表(Skip List)是一种基于概率的数据结构,适用于企业局域网监控中海量连接记录的高效处理。其通过多层索引机制实现快速查找、插入和删除操作,时间复杂度为 $O(\log n)$,优于链表和平衡树。跳表在异常连接识别、黑名单管理和历史记录溯源等场景中表现出色,具备实现简单、支持范围查询等优势,是企业网络监控中动态数据管理的理想选择。
194 0
|
8月前
|
机器学习/深度学习 存储 算法
基于 C++ 布隆过滤器算法的局域网上网行为控制:URL 访问过滤的高效实现研究
本文探讨了一种基于布隆过滤器的局域网上网行为控制方法,旨在解决传统黑白名单机制在处理海量URL数据时存储与查询效率低的问题。通过C++实现URL访问过滤功能,实验表明该方法可将内存占用降至传统方案的八分之一,查询速度提升约40%,假阳性率可控。研究为优化企业网络管理提供了新思路,并提出结合机器学习、改进哈希函数及分布式协同等未来优化方向。
238 0
|
10月前
|
存储 监控 算法
基于 C++ 哈希表算法的局域网如何监控电脑技术解析
当代数字化办公与生活环境中,局域网的广泛应用极大地提升了信息交互的效率与便捷性。然而,出于网络安全管理、资源合理分配以及合规性要求等多方面的考量,对局域网内计算机进行有效监控成为一项至关重要的任务。实现局域网内计算机监控,涉及多种数据结构与算法的运用。本文聚焦于 C++ 编程语言中的哈希表算法,深入探讨其在局域网计算机监控场景中的应用,并通过详尽的代码示例进行阐释。
201 4
|
4月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
419 0
|
4月前
|
数据采集 分布式计算 并行计算
mRMR算法实现特征选择-MATLAB
mRMR算法实现特征选择-MATLAB
290 2
|
5月前
|
传感器 机器学习/深度学习 编解码
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
277 3