实时计算 Flink版产品使用合集之在Application模式下,如何在客户端中同步获取任务执行结果后再退出

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStreamAPI、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。

问题一:flink使用rockdb作为状态后端,开了增量检查点,可以直接关闭增量检查点吗?会出现问题吗?

flink使用rockdb作为状态后端,开了增量检查点,导致历史的checkpoint目录我不敢删除,可以直接关闭增量检查点吗?会出现问题吗?



参考答案:

使用带有 RocksDB 状态后端的增量检查点,而 Flink 使用 RocksDB 的内部备份机制来随着时间的推移整合检查点数据。因此Flink 中增量检查点历史不会无限增长,Flink 最终会自动消耗和修剪旧的检查点。

StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

env.setStateBackend(new RocksDBStateBackend(filebackend, true));

另外第二个参数设置成true,或者 你可以定期执行一次 save point 然后删除老的checkpoint数据 然后用save point 启动 这样也能避免过大。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/578708



问题二:Flink这里为何会是个NA啊?

Flink这里为何会是个NA啊?



参考答案:

打开chain。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/578707



问题三:在flink1.17Application模式中跑批,有没有办法同步获取任务执行结果后再退出客户端?

在flink1.17Application模式中 客户端执行 flink run-application -t yarn-application 跑批,有没有办法同步获取任务执行结果后再退出客户端 ?



参考答案:

可以自定义source 没有消费到数据后 就退出jvm 或者 试试flink 批处理。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/578706



问题四:有什么办法让flink只查询cache的数据?

使用flink sql 的lookup join,一边是kafka流表,一边是mysql维表,我启用了cache,有什么办法让flink只查询cache的数据,如果查不到就直接输出join结果,不要再去mysql里查数据?



参考答案:

mysql的 lookup.cache.strategy. 设置为all 。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/578546



问题五:在Flink如果满足条件,那么每3个partition数据会发送到一个source的solt中吗?

在Flink如果partition数是6,source并行度是2,那么每3个partition数据会发送到一个source的solt中吗?还是partition数据会hash写入source的solt?



参考答案:

一般是hash到下游。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/578544

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
3月前
|
运维 数据处理 数据安全/隐私保护
阿里云实时计算Flink版测评报告
该测评报告详细介绍了阿里云实时计算Flink版在用户行为分析与标签画像中的应用实践,展示了其毫秒级的数据处理能力和高效的开发流程。报告还全面评测了该服务在稳定性、性能、开发运维及安全性方面的卓越表现,并对比自建Flink集群的优势。最后,报告评估了其成本效益,强调了其灵活扩展性和高投资回报率,适合各类实时数据处理需求。
|
28天前
|
存储 分布式计算 流计算
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
933 73
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
|
24天前
|
SQL 运维 数据可视化
阿里云实时计算Flink版产品体验测评
阿里云实时计算Flink基于Apache Flink构建,提供一站式实时大数据分析平台,支持端到端亚秒级实时数据分析,适用于实时大屏、实时报表、实时ETL和风控监测等场景,具备高性价比、开发效率、运维管理和企业安全等优势。
zdl
|
16天前
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
120 56
|
2月前
|
运维 搜索推荐 数据安全/隐私保护
阿里云实时计算Flink版测评报告
阿里云实时计算Flink版在用户行为分析与标签画像场景中表现出色,通过实时处理电商平台用户行为数据,生成用户兴趣偏好和标签,提升推荐系统效率。该服务具备高稳定性、低延迟、高吞吐量,支持按需计费,显著降低运维成本,提高开发效率。
70 1
|
2月前
|
运维 数据处理 Apache
数据实时计算产品对比测评报告:阿里云实时计算Flink版
数据实时计算产品对比测评报告:阿里云实时计算Flink版
|
2月前
|
Java Shell Maven
Flink-11 Flink Java 3分钟上手 打包Flink 提交任务至服务器执行 JobSubmit Maven打包Ja配置 maven-shade-plugin
Flink-11 Flink Java 3分钟上手 打包Flink 提交任务至服务器执行 JobSubmit Maven打包Ja配置 maven-shade-plugin
119 4
|
3月前
|
存储 运维 监控
阿里云实时计算Flink版的评测
阿里云实时计算Flink版的评测
80 15
|
2月前
|
运维 监控 Serverless
阿里云实时计算Flink版评测报告
阿里云实时计算Flink版是一款全托管的Serverless实时流处理服务,基于Apache Flink构建,提供企业级增值功能。本文从稳定性、性能、开发运维、安全性和成本效益等方面全面评测该产品,展示其在实时数据处理中的卓越表现和高投资回报率。
|
2月前
|
存储 运维 监控
实时计算Flink版在稳定性、性能、开发运维、安全能力等等跟其他引擎及自建Flink集群比较。
实时计算Flink版在稳定性、性能、开发运维和安全能力等方面表现出色。其自研的高性能状态存储引擎GeminiStateBackend显著提升了作业稳定性,状态管理优化使性能提升40%以上。核心性能较开源Flink提升2-3倍,资源利用率提高100%。提供一站式开发管理、自动化运维和丰富的监控告警功能,支持多语言开发和智能调优。安全方面,具备访问控制、高可用保障和全链路容错能力,确保企业级应用的安全与稳定。
47 0

相关产品

  • 实时计算 Flink版