实时计算 Flink版产品使用合集之增量同步速度较慢,导致延迟增加,该如何优化

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
简介: 实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStreamAPI、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。

问题一:Flink CDC增量只能是1,但是binlog数量很大 延迟到小时级别 有什么建议吗?

Flink CDC增量只能是1,但是binlog数量很大 延迟到小时级别 有什么建议吗?



参考答案:

如果这么大的话,适当调整下debezium的采集数据大小,flink单并行度处理这些数据,还是easy的,是不是上游采集的太慢造成的问题。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/579920



问题二:Flink CDC全量是要等读取完所有才能完成checkpoint吗?

Flink CDC全量是要等读取完所有才能完成checkpoint吗?



参考答案:

Flink CDC在进行全量数据摄取时,对于首次启动或需要进行全量同步的情况,通常会有一个初始的快照阶段,该阶段需要将目标数据库中的所有数据一次性读取完毕并传递到Flink作业中进行处理。在这个过程中,Flink作业会暂停定期的增量checkpoint,直到全量数据加载完成。

一旦全量数据读取处理完毕并且所有数据已经被Flink作业正常处理并进入状态后端,此时才会触发一个完整的checkpoint。这意味着在全量阶段,checkpoint确实是需要等待所有全量数据读取及处理完成之后才能成功完成。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/579919



问题三:Flink CDC单表发现修改并行度后source和sink端都是1,是只能为1还是可以修改?

Flink CDC单表发现修改并行度后source和sink端都是1,是只能为1还是可以修改?



参考答案:

增量阶段只能为1,source,如果表数据量大一点,上亿数据有试过么



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/579918



问题四:Flink CDC中flink sql同步数据,有知道可以排除delete操作吗,需要配置点啥的 ?

Flink CDC中flink sql同步数据,有知道可以排除delete操作吗,需要配置点啥的 ?



参考答案:

debezium.skipped.operations = 'd'



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/579917



问题五:Flink CDC1.16版本,从oracle同步到kafka,请问你们怎么解决的?

Flink CDC1.16版本,从oracle同步到kafka,kafka的配置信息如下:报这个错误:Caused by: org.apache.kafka.common.errors.InvalidProducerEpochException: Producer attempted to produce with an old epoch.请问你们怎么解决的?

小数据量表就没有问题,大数据量表10亿就复现了这个问题



参考答案:

我之前使用精确一次语义也报这个,后面索性改成至少一次语义了,下游去做幂等



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/579915

相关实践学习
基于Hologres+Flink搭建GitHub实时数据大屏
通过使用Flink、Hologres构建实时数仓,并通过Hologres对接BI分析工具(以DataV为例),实现海量数据实时分析.
实时计算 Flink 实战课程
如何使用实时计算 Flink 搞定数据处理难题?实时计算 Flink 极客训练营产品、技术专家齐上阵,从开源 Flink功能介绍到实时计算 Flink 优势详解,现场实操,5天即可上手! 欢迎开通实时计算 Flink 版: https://cn.aliyun.com/product/bigdata/sc Flink Forward Asia 介绍: Flink Forward 是由 Apache 官方授权,Apache Flink Community China 支持的会议,通过参会不仅可以了解到 Flink 社区的最新动态和发展计划,还可以了解到国内外一线大厂围绕 Flink 生态的生产实践经验,是 Flink 开发者和使用者不可错过的盛会。 去年经过品牌升级后的 Flink Forward Asia 吸引了超过2000人线下参与,一举成为国内最大的 Apache 顶级项目会议。结合2020年的特殊情况,Flink Forward Asia 2020 将在12月26日以线上峰会的形式与大家见面。
相关文章
|
6月前
|
SQL 算法 调度
Flink批处理自适应执行计划优化
本文整理自阿里集团高级开发工程师孙夏在Flink Forward Asia 2024的分享,聚焦Flink自适应逻辑执行计划与Join算子优化。内容涵盖自适应批处理调度器、动态逻辑执行计划、自适应Broadcast Hash Join及Join倾斜优化等技术细节,并展望未来改进方向,如支持更多场景和智能优化策略。文章还介绍了Flink UI调整及性能优化措施,为批处理任务提供更高效、灵活的解决方案。
218 0
Flink批处理自适应执行计划优化
|
4月前
|
SQL 关系型数据库 MySQL
Flink CDC 3.4 发布, 优化高频 DDL 处理,支持 Batch 模式,新增 Iceberg 支持
Apache Flink CDC 3.4.0 版本正式发布!经过4个月的开发,此版本强化了对高频表结构变更的支持,新增 batch 执行模式和 Apache Iceberg Sink 连接器,可将数据库数据全增量实时写入 Iceberg 数据湖。51位贡献者完成了259次代码提交,优化了 MySQL、MongoDB 等连接器,并修复多个缺陷。未来 3.5 版本将聚焦脏数据处理、数据限流等能力及 AI 生态对接。欢迎下载体验并提出反馈!
804 1
Flink CDC 3.4 发布, 优化高频 DDL 处理,支持 Batch 模式,新增 Iceberg 支持
|
6月前
|
存储 SQL Java
Flink CDC + Hologres高性能数据同步优化实践
本文整理自阿里云高级技术专家胡一博老师在Flink Forward Asia 2024数据集成(二)专场的分享,主要内容包括:1. Hologres介绍:实时数据仓库,支持毫秒级写入和高QPS查询;2. 写入优化:通过改进缓冲队列、连接池和COPY模式提高吞吐量和降低延迟;3. 消费优化:优化离线场景和分区表的消费逻辑,提升性能和资源利用率;4. 未来展望:进一步简化用户操作,支持更多DDL操作及全增量消费。Hologres 3.0全新升级为一体化实时湖仓平台,提供多项新功能并降低使用成本。
503 1
Flink CDC + Hologres高性能数据同步优化实践
|
6月前
|
SQL 存储 调度
基于 Flink 进行增量批计算的探索与实践
基于 Flink 进行增量批计算的探索与实践
134 1
基于 Flink 进行增量批计算的探索与实践
|
8月前
|
SQL 存储 Apache
基于 Flink 进行增量批计算的探索与实践
本文整理自阿里云高级技术专家、Apache Flink PMC朱翥老师在Flink Forward Asia 2024的分享,内容分为三部分:背景介绍、工作介绍和总结展望。首先介绍了增量计算的定义及其与批计算、流计算的区别,阐述了增量计算的优势及典型需求场景,并解释了为何选择Flink进行增量计算。其次,详细描述了当前的工作进展,包括增量计算流程、执行计划生成、控制消费数据量级及执行进度记录恢复等关键技术点。最后,展示了增量计算的简单示例、性能测评结果,并对未来工作进行了规划。
901 6
基于 Flink 进行增量批计算的探索与实践
|
8月前
|
消息中间件 关系型数据库 MySQL
Flink CDC 在阿里云实时计算Flink版的云上实践
本文整理自阿里云高级开发工程师阮航在Flink Forward Asia 2024的分享,重点介绍了Flink CDC与实时计算Flink的集成、CDC YAML的核心功能及应用场景。主要内容包括:Flink CDC的发展及其在流批数据处理中的作用;CDC YAML支持的同步链路、Transform和Route功能、丰富的监控指标;典型应用场景如整库同步、Binlog原始数据同步、分库分表同步等;并通过两个Demo展示了MySQL整库同步到Paimon和Binlog同步到Kafka的过程。最后,介绍了未来规划,如脏数据处理、数据限流及扩展数据源支持。
528 0
Flink CDC 在阿里云实时计算Flink版的云上实践
|
9月前
|
存储 关系型数据库 BI
实时计算UniFlow:Flink+Paimon构建流批一体实时湖仓
实时计算架构中,传统湖仓架构在数据流量管控和应用场景支持上表现良好,但在实际运营中常忽略细节,导致新问题。为解决这些问题,提出了流批一体的实时计算湖仓架构——UniFlow。该架构通过统一的流批计算引擎、存储格式(如Paimon)和Flink CDC工具,简化开发流程,降低成本,并确保数据一致性和实时性。UniFlow还引入了Flink Materialized Table,实现了声明式ETL,优化了调度和执行模式,使用户能灵活调整新鲜度与成本。最终,UniFlow不仅提高了开发和运维效率,还提供了更实时的数据支持,满足业务决策需求。
|
12月前
|
运维 数据处理 数据安全/隐私保护
阿里云实时计算Flink版测评报告
该测评报告详细介绍了阿里云实时计算Flink版在用户行为分析与标签画像中的应用实践,展示了其毫秒级的数据处理能力和高效的开发流程。报告还全面评测了该服务在稳定性、性能、开发运维及安全性方面的卓越表现,并对比自建Flink集群的优势。最后,报告评估了其成本效益,强调了其灵活扩展性和高投资回报率,适合各类实时数据处理需求。
|
10月前
|
存储 分布式计算 流计算
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
3163 73
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎

相关产品

  • 实时计算 Flink版