实时计算 Flink版产品使用合集之是否支持多并行度采集Oracle全量数据

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
简介: 实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStreamAPI、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。

问题一:Flink CDC系统配置和环境怎么样的,现在采集oracle全量支持多并行度吗?

Flink CDC系统配置和环境怎么样的,看这张图是支持source并行度了,我现在采集oracle全量支持多并行度吗?



参考答案:

用增量算法去多并行度



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/579949



问题二:Flink CDC原表字段增加或者类型修改,目标表有没有好的方案自动调整?

Flink CDC原表字段增加或者类型修改,目标表有没有好的方案自动调整?



参考答案:

Flink CDC支持自动同步整库的全量和增量数据,并且可以实时将每张源表的表结构变更(如加列等)同步到对应的目标表中。然而,需要注意的是,如果新增字段,那么下游可能无法收到新增字段的数据,如果删除字段,那么Flink任务可能会出现报错。

对于这种情况,可以通过自定义扩展来解决。例如,可以实现自己的DebeziumDeserializationSchema,将binlog数据转换为JSON,或者根据业务需求实现更个性化的操作,例如向下游发送自定义的Schema变更通知等等。这样即使原表字段增加或者类型修改,也可以在目标表中得到相应的调整。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/579948



问题三:Flink CDC中flinksql怎么打印日志啊?

Flink CDC中flinksql怎么打印日志啊?



参考答案:

在Flink SQL中,可以通过以下方式打印日志:

  1. 使用set log.level命令设置日志级别。例如,将日志级别设置为DEBUG:
SET log.level = 'DEBUG';
  1. 这将打印出更详细的日志信息。
  2. 使用show source命令查看源表的详细信息。例如,查看名为my_source_table的源表的详细信息:
SHOW SOURCE my_source_table;
  1. 这将显示与该源表相关的日志信息。
  2. 使用EXPLAIN命令查看查询计划和执行计划。例如,查看名为my_query的查询的执行计划:
EXPLAIN my_query;
  1. 这将显示与该查询相关的日志信息,包括执行计划、资源消耗等。
  2. 使用SET table.exec.result.log.enabled命令启用结果集日志记录。例如,启用名为my_sink_table的目标表的结果集日志记录:
SET table.exec.result.log.enabled=true;
  1. 这将打印出目标表的结果集日志信息。

请注意,以上方法适用于Flink SQL CLI或IDE中执行的SQL语句。如果你使用的是其他方式(如提交作业到Flink集群),则需要在相应的配置中设置日志级别或启用日志记录功能。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/579946



问题四:Flink CDC再加上输出条件:条数+开窗window时间,会变慢一点,还有其它什么好建议提升?

Flink CDC再加上输出条件:条数+开窗window时间,会变慢一点,还有其它什么好建议提升source端?



参考答案:

Flink CDC的输出条件中加入条数和开窗时间窗口确实会对性能产生一定的影响,因为需要对数据进行额外的过滤和聚合操作。以下是一些提升source端性能的建议:

  1. 调整并行度:适当增加或减少并行度可以优化任务的执行效率。可以尝试不同的并行度设置,找到最佳的并行度值。
  2. 调整checkpoint间隔:checkpoint是Flink中用于容错和状态保存的重要机制,但频繁的checkpoint会降低性能。可以尝试调整checkpoint间隔,以平衡性能和容错性。
  3. 使用异步IO:Flink支持异步IO,可以提高数据的读取速度。可以尝试开启异步IO,并适当调整相关参数。
  4. 使用增量检查点:增量检查点可以减少每个checkpoint的数据量,从而提高性能。可以尝试开启增量检查点功能。
  5. 优化SQL语句:如果使用了SQL语句进行数据处理,可以尝试优化SQL语句,例如使用合适的索引、避免全表扫描等。
  6. 使用更高效的数据结构:根据具体的业务需求,选择合适的数据结构可以提高处理效率。例如,如果需要频繁地进行聚合操作,可以考虑使用Bloom Filter等高效的数据结构。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/579945



问题五:Flink CDC增量source 并行度1,导致的拉取数据处理不过来,这个有啥优化方案吗?

Flink CDC增量source 并行度1,导致的拉取数据处理不过来,flink下游的数据量明显低于mysql数据量,造成延迟。这个有啥优化方案吗?



参考答案:

当Flink CDC的Source并行度设置为1,可能会因为单个任务线程无法及时处理MySQL数据库产生的大量变更数据,进而导致下游的数据处理滞后和延迟增大。针对这种情况,可以尝试以下几种优化方案:

  1. 增加Source并行度:
  • 提高Flink CDC Source任务的并行度是最直接的优化手段,这样可以从MySQL binlog中并发地读取和处理更多的数据。每个并行的source实例会独立消费binlog,从而提升整体的拉取和处理能力。
  1. 调整其他相关配置:
  • max.batch.sizefetch.size 类似的参数可以控制每次从MySQL读取的事件数量,适当增加可以减少网络交互次数,但需注意防止内存溢出。
  • buffer.memoryqueue.capacity 控制缓冲区大小,确保有足够的空间存储拉取到的事件,避免因为缓冲区不足而限制拉取速度。
  • heartbeat.interval.ms 和相关的超时参数,确保上游MySQL服务器与Flink CDC之间的心跳和连接稳定。
  1. 优化下游处理逻辑:
  • 如果下游算子处理逻辑复杂或耗时,那么即使增加Source并行度也可能受限于下游瓶颈。检查并优化下游operator,如是否可以增加其并行度,或者简化计算逻辑以提高处理效率。
  1. 监控与资源分配:
  • 确保Flink集群有足够的计算资源,如CPU、内存等,以便在增加并行度后能提供足够的处理能力。
  • 对任务进行实时监控,查看是否存在任何异常情况或资源争抢,如IO瓶颈、网络带宽限制等,并针对性优化。
  1. Binlog格式与过滤条件:
  • 根据业务需求,只捕获必要的数据库表和列变化,避免无谓的资源消耗,进一步提高处理效率。
  1. 错误处理与重试策略:
  • 设置合理的错误处理和重试策略,确保偶发错误不会导致整个任务停滞,保持数据流的连续性和稳定性。

通过上述措施综合调整和优化,可以有效缓解由于Source并行度过低造成的MySQL数据拉取延迟问题。当然,在实际操作前,请务必结合具体的应用场景和系统环境进行细致评估和测试。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/579944

相关实践学习
基于Hologres+Flink搭建GitHub实时数据大屏
通过使用Flink、Hologres构建实时数仓,并通过Hologres对接BI分析工具(以DataV为例),实现海量数据实时分析.
实时计算 Flink 实战课程
如何使用实时计算 Flink 搞定数据处理难题?实时计算 Flink 极客训练营产品、技术专家齐上阵,从开源 Flink功能介绍到实时计算 Flink 优势详解,现场实操,5天即可上手! 欢迎开通实时计算 Flink 版: https://cn.aliyun.com/product/bigdata/sc Flink Forward Asia 介绍: Flink Forward 是由 Apache 官方授权,Apache Flink Community China 支持的会议,通过参会不仅可以了解到 Flink 社区的最新动态和发展计划,还可以了解到国内外一线大厂围绕 Flink 生态的生产实践经验,是 Flink 开发者和使用者不可错过的盛会。 去年经过品牌升级后的 Flink Forward Asia 吸引了超过2000人线下参与,一举成为国内最大的 Apache 顶级项目会议。结合2020年的特殊情况,Flink Forward Asia 2020 将在12月26日以线上峰会的形式与大家见面。
相关文章
|
3月前
|
SQL 人工智能 JSON
Flink 2.1 SQL:解锁实时数据与AI集成,实现可扩展流处理
简介:本文整理自阿里云高级技术专家李麟在Flink Forward Asia 2025新加坡站的分享,介绍了Flink 2.1 SQL在实时数据处理与AI融合方面的关键进展,包括AI函数集成、Join优化及未来发展方向,助力构建高效实时AI管道。
786 43
|
3月前
|
SQL 人工智能 JSON
Flink 2.1 SQL:解锁实时数据与AI集成,实现可扩展流处理
本文整理自阿里云的高级技术专家、Apache Flink PMC 成员李麟老师在 Flink Forward Asia 2025 新加坡[1]站 —— 实时 AI 专场中的分享。将带来关于 Flink 2.1 版本中 SQL 在实时数据处理和 AI 方面进展的话题。
282 0
Flink 2.1 SQL:解锁实时数据与AI集成,实现可扩展流处理
|
3月前
|
SQL 关系型数据库 Apache
从 Flink 到 Doris 的实时数据写入实践 —— 基于 Flink CDC 构建更实时高效的数据集成链路
本文将深入解析 Flink-Doris-Connector 三大典型场景中的设计与实现,并结合 Flink CDC 详细介绍了整库同步的解决方案,助力构建更加高效、稳定的实时数据处理体系。
1751 0
从 Flink 到 Doris 的实时数据写入实践 —— 基于 Flink CDC 构建更实时高效的数据集成链路
|
4月前
|
存储 消息中间件 搜索推荐
京东零售基于Flink的推荐系统智能数据体系
摘要:本文整理自京东零售技术专家张颖老师,在 Flink Forward Asia 2024 生产实践(二)专场中的分享,介绍了基于Flink构建的推荐系统数据,以及Flink智能体系带来的智能服务功能。内容分为以下六个部分: 推荐系统架构 索引 样本 特征 可解释 指标 Tips:关注「公众号」回复 FFA 2024 查看会后资料~
337 1
京东零售基于Flink的推荐系统智能数据体系
|
2月前
|
Oracle 关系型数据库 Linux
【赵渝强老师】Oracle数据库配置助手:DBCA
Oracle数据库配置助手(DBCA)是用于创建和配置Oracle数据库的工具,支持图形界面和静默执行模式。本文介绍了使用DBCA在Linux环境下创建数据库的完整步骤,包括选择数据库操作类型、配置存储与网络选项、设置管理密码等,并提供了界面截图与视频讲解,帮助用户快速掌握数据库创建流程。
350 93
|
1月前
|
Oracle 关系型数据库 Linux
【赵渝强老师】使用NetManager创建Oracle数据库的监听器
Oracle NetManager是数据库网络配置工具,用于创建监听器、配置服务命名与网络连接,支持多数据库共享监听,确保客户端与服务器通信顺畅。
179 0
|
4月前
|
存储 Oracle 关系型数据库
服务器数据恢复—光纤存储上oracle数据库数据恢复案例
一台光纤服务器存储上有16块FC硬盘,上层部署了Oracle数据库。服务器存储前面板2个硬盘指示灯显示异常,存储映射到linux操作系统上的卷挂载不上,业务中断。 通过storage manager查看存储状态,发现逻辑卷状态失败。再查看物理磁盘状态,发现其中一块盘报告“警告”,硬盘指示灯显示异常的2块盘报告“失败”。 将当前存储的完整日志状态备份下来,解析备份出来的存储日志并获得了关于逻辑卷结构的部分信息。
|
2月前
|
SQL Oracle 关系型数据库
Oracle数据库创建表空间和索引的SQL语法示例
以上SQL语法提供了一种标准方式去组织Oracle数据库内部结构,并且通过合理使用可以显著改善查询速度及整体性能。需要注意,在实际应用过程当中应该根据具体业务需求、系统资源状况以及预期目标去合理规划并调整参数设置以达到最佳效果。
281 8
|
4月前
|
SQL Oracle 关系型数据库
比较MySQL和Oracle数据库系统,特别是在进行分页查询的方法上的不同
两者的性能差异将取决于数据量大小、索引优化、查询设计以及具体版本的数据库服务器。考虑硬件资源、数据库设计和具体需求对于实现优化的分页查询至关重要。开发者和数据库管理员需要根据自身使用的具体数据库系统版本和环境,选择最合适的分页机制,并进行必要的性能调优来满足应用需求。
246 11

相关产品

  • 实时计算 Flink版
  • 推荐镜像

    更多