实时计算 Flink版产品使用合集之如何SQL同步数据到Oracle数据库中

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStreamAPI、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。

问题一:Flink CDC中mysql源数据库有大量DML操作,怎么优化呢?

Flink CDC中mysql源数据库有大量DML操作, Debezium消费数据时间落后数据生成时间 延迟几个小时。怎么优化呢?



参考答案:

在Flink CDC中,如果遇到MySQL源数据库有大量DML操作,而Debezium消费数据时间落后数据生成时间几个小时的情况,以下是一些可能的优化策略:

1. 增加Debezium连接器的并行度:
如果你的Flink作业的并行度设置得较低,可能会导致Debezium连接器处理Binlog的速度跟不上数据生成的速度。尝试增加作业的并行度,以提高数据处理能力。

1. 优化MySQL服务器配置:确保MySQL服务器的配置能够高效地处理大量的DML操作和Binlog生成。这可能包括调整以下参数:

innodb_flush_log_at_trx_commit: 控制事务提交时如何刷新日志到磁盘。根据实际情况调整这个参数可以影响写入性能。

sync_binlog: 控制Binlog的同步频率。降低此值可以提高写入性能,但可能增加数据丢失的风险。

3. 使用更高效的Binlog存储格式:
MySQL的Row-Based Binary Logging(RBR)通常比Statement-Based Binary Logging(SBR)更高效,因为它直接记录行级别的更改,而不是整个SQL语句。确保你的MySQL服务器配置为使用RBR。

3. 监控和优化网络带宽:
确保源数据库和Flink集群之间的网络带宽足够,并且没有其他网络瓶颈影响数据传输速度。

3. 减少数据处理复杂性:
如果Flink作业中的数据处理逻辑复杂,可能会增加处理延迟。检查你的数据处理管道,看看是否有可以简化或优化的地方。

3. 增大Flink Checkpoint间隔:
如果Flink的Checkpoint过于频繁,可能会占用较多的资源并影响数据处理速度。尝试增大Checkpoint的间隔,以减少其对整体性能的影响。

3. 使用高性能的消息队列:
如果你使用消息队列(如Kafka)作为Flink和Debezium之间的中间件,确保消息队列的配置和性能能够满足高吞吐量的需求。

3. 硬件升级:
考虑升级源数据库、Flink集群或者网络设备的硬件,以提高整体性能。

3. 分库分表:
如果单个数据库表的数据量非常大,考虑进行分库分表,将数据分散到多个数据库实例或者表中,从而降低单个实例的压力。

3. 使用更高级的CDC工具或功能:
一些高级的CDC工具提供了更高效的变更数据捕获和处理机制。例如,某些工具支持并行读取Binlog或者提供专门的优化策略。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/581833



问题二:Flink CDC中Paimon 的主要功能是存数据吗?

Flink CDC中Paimon 的主要功能是存数据吗?



参考答案:

跟kafka差不多



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/581830



问题三:flink oracle cdc,每次初始化都是所有的库表,怎么设置只捕获指定表的表结构?

flink oracle cdc,每次初始化都是所有的库表,怎么设置只捕获指定表的表结构,设置了

debeziumProps.setProperty("store.only.captured.tables.ddl", "true");

debeziumProps.setProperty("schema.history.internal.store.only.captured.tables.ddl", "true");

但是没有生效,是有别的参数来设置吗?



参考答案:

读所有表正常吧,不读你配置的库中所有的表名,咋知道你设置的要抓取的表名正不正确,如果不对,给你报错。只要不是运行过程中还获取未配置的表结构变动应该都是合理的吧,你配置的参数应该和这个没关系



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/581829



问题四:有人用flink sql同步数据到oracle吗?

有人用flink sql同步数据到oracle吗?



参考答案:

要将Flink SQL中的数据同步到Oracle数据库,您可以使用Flink的Table API和DataStream API来实现。以下是一个简单的示例,演示如何将Flink SQL查询的结果同步到Oracle数据库:

java

import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;

import org.apache.flink.table.api.*;

public class FlinkToOracle {

public static void main(String[] args) throws Exception {  
    // 设置执行环境  
    StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();  
    StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env);  
    // 定义输入表,这里假设您已经将数据加载到了名为inputTable的表  
    tableEnv.executeSql("CREATE TABLE inputTable (" +  
            " id INT," +  
            " name STRING," +  
            " age INT" +  
            ") WITH (" +  
            " 'connector' = '...'," + // 指定输入数据的连接器,例如Kafka等  
            " 'format' = '...'," + // 指定输入数据的格式,例如JSON等  
            " ..."); // 其他连接器和格式的配置参数  
    // 定义输出表,使用JDBC连接器连接到Oracle数据库  
    tableEnv.executeSql("CREATE TABLE outputTable (" +  
            " id INT," +  
            " name STRING," +  
            " age INT" +  
            ") WITH (" +  
            " 'connector' = 'jdbc'," +  
            " 'url' = 'jdbc:oracle:thin:@//localhost:1521/orcl'," + // 替换为您的Oracle数据库连接URL  
            " 'table-name' = 'your_table_name'," + // 替换为您在Oracle数据库中的表名  
            " 'username' = 'your_username'," + // 替换为您的Oracle数据库用户名  
            " 'password' = 'your_password'," + // 替换为您的Oracle数据库密码  
            " 'driver' = 'oracle.jdbc.OracleDriver'" + // 指定Oracle JDBC驱动类名  
            ")");  
    // 执行查询并将结果写入输出表  
    Table result = tableEnv.sqlQuery("SELECT * FROM inputTable");  
    tableEnv.toAppendStream(result, Row.class).print(); // 打印结果到控制台,也可以选择其他输出方式,例如写入文件或写入数据库等。  
    // 执行任务并等待完成  
    env.execute("Flink to Oracle Example");  
}

}

在上述示例中,我们首先设置了一个流式执行环境并创建了一个名为inputTable的输入表。然后,我们使用CREATE TABLE语句创建了一个名为outputTable的输出表,该表使用JDBC连接器连接到Oracle数据库。接下来,我们执行了一个查询并将结果写入输出表。最后,我们执行任务并等待完成。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/581315



问题五:Flink怎么给join设置parallelism?

Flink怎么给join设置parallelism?



参考答案:

在Apache Flink中,你可以通过以下方式为join操作设置并行度(parallelism):

1、使用setParallelism方法:

对于执行环境(StreamExecutionEnvironment)或特定的操作,你可以使用setParallelism方法来设置并行度。

java

final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

env.setParallelism(5); // 设置全局并行度为5

DataStream> stream1 = ...;

DataStream> stream2 = ...;

stream1.join(stream2)

.where(0)

.equalTo(0)

.window(TumblingProcessingTimeWindows.of(Time.seconds(10)))

.apply(new MyJoinFunction())

.setParallelism(3); // 设置此join操作的并行度为3

2、使用配置文件:

你可以通过在flink-conf.yaml配置文件中设置parallelism.default来定义全局的默认并行度。

makefile

parallelism.default: 5

3、命令行参数:

当提交Flink作业时,你可以使用-p命令行参数来指定并行度。

css

flink run -p 5 /path/to/your/jar/file.jar



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/581314

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
1月前
|
SQL
简单练习Microsoft SQL Server MERGE同步两个表
【10月更文挑战第13天】本文介绍了在Microsoft SQL Server中使用`MERGE`语句同步两个表的步骤。首先创建源表`SourceTable`和目标表`TargetTable`并分别插入数据,然后通过`MERGE`语句根据ID匹配行,实现更新、插入和删除操作,最后验证同步结果。此方法可根据需求调整以适应不同场景。
|
2月前
|
运维 数据处理 数据安全/隐私保护
阿里云实时计算Flink版测评报告
该测评报告详细介绍了阿里云实时计算Flink版在用户行为分析与标签画像中的应用实践,展示了其毫秒级的数据处理能力和高效的开发流程。报告还全面评测了该服务在稳定性、性能、开发运维及安全性方面的卓越表现,并对比自建Flink集群的优势。最后,报告评估了其成本效益,强调了其灵活扩展性和高投资回报率,适合各类实时数据处理需求。
|
15天前
|
存储 分布式计算 流计算
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
679 10
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
|
14天前
|
缓存 关系型数据库 MySQL
高并发架构系列:数据库主从同步的 3 种方案
本文详解高并发场景下数据库主从同步的三种解决方案:数据主从同步、数据库半同步复制、数据库中间件同步和缓存记录写key同步,旨在帮助解决数据一致性问题。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
高并发架构系列:数据库主从同步的 3 种方案
|
12天前
|
SQL 运维 数据可视化
阿里云实时计算Flink版产品体验测评
阿里云实时计算Flink基于Apache Flink构建,提供一站式实时大数据分析平台,支持端到端亚秒级实时数据分析,适用于实时大屏、实时报表、实时ETL和风控监测等场景,具备高性价比、开发效率、运维管理和企业安全等优势。
|
23天前
|
算法 大数据 数据库
云计算与大数据平台的数据库迁移与同步
本文详细介绍了云计算与大数据平台的数据库迁移与同步的核心概念、算法原理、具体操作步骤、数学模型公式、代码实例及未来发展趋势与挑战。涵盖全量与增量迁移、一致性与异步复制等内容,旨在帮助读者全面了解并应对相关技术挑战。
32 3
zdl
|
3天前
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
18 0
|
28天前
|
运维 搜索推荐 数据安全/隐私保护
阿里云实时计算Flink版测评报告
阿里云实时计算Flink版在用户行为分析与标签画像场景中表现出色,通过实时处理电商平台用户行为数据,生成用户兴趣偏好和标签,提升推荐系统效率。该服务具备高稳定性、低延迟、高吞吐量,支持按需计费,显著降低运维成本,提高开发效率。
66 1
|
1月前
|
运维 数据处理 Apache
数据实时计算产品对比测评报告:阿里云实时计算Flink版
数据实时计算产品对比测评报告:阿里云实时计算Flink版
|
29天前
|
运维 监控 Serverless
阿里云实时计算Flink版评测报告
阿里云实时计算Flink版是一款全托管的Serverless实时流处理服务,基于Apache Flink构建,提供企业级增值功能。本文从稳定性、性能、开发运维、安全性和成本效益等方面全面评测该产品,展示其在实时数据处理中的卓越表现和高投资回报率。

相关产品

  • 实时计算 Flink版
  • 推荐镜像

    更多