NumPy 随机数据分布与 Seaborn 可视化详解

简介: 数据分布是指数据集中所有可能值出现的频率,并用概率来表示。它描述了数据取值的可能性。Seaborn 是一个基于 Matplotlib 的 Python 数据可视化库,用于创建统计图表。它提供了一系列高级绘图函数,可以轻松创建美观且信息丰富的统计图形。

随机数据分布

什么是数据分布?

数据分布是指数据集中所有可能值出现的频率,并用概率来表示。它描述了数据取值的可能性。

在统计学和数据科学中,数据分布是分析数据的重要基础。

NumPy 中的随机分布

NumPy 的 random 模块提供了多种方法来生成服从不同分布的随机数。

生成离散分布随机数

choice(a, p, size):从数组 a 中随机选择元素,并根据概率 p 进行选择。a:源数组,包含所有可能值。p:每个值的概率数组,总和必须为 1。size:输出数组的形状。

示例:生成 100 个随机数,其中 3 出现的概率为 0.2,5 出现的概率为 0.4,7 出现的概率为 0.3,9 出现的概率为 0.1:

import numpy as np

x = np.random.choice([3, 5, 7, 9], p=[0.2, 0.4, 0.3, 0.1], size=100)
print(x)

生成连续分布随机数

NumPy 提供了多种方法来生成服从不同连续分布的随机数,例如正态分布、均匀分布、指数分布等。

randn(size):生成服从标准正态分布的随机数。rand(size):生成服从均匀分布的随机数。beta(a, b, size):生成服从 Beta 分布的随机数。gamma(shape, scale, size):生成服从 Gamma 分布的随机数。poisson(lam, size):生成服从泊松分布的随机整数。

示例:生成 10 个服从标准正态分布的随机数:

import numpy as np

x = np.random.randn(10)
print(x)

随机排列

洗牌数组

shuffle(arr):对数组 arr 进行随机洗牌,修改原始数组。

示例:随机洗牌数组 [1, 2, 3, 4, 5]

import numpy as np
from numpy.random import shuffle

arr = np.array([1, 2, 3, 4, 5])

shuffle(arr)
print(arr)

生成数组的随机排列

permutation(arr):生成数组 arr 元素的随机排列,不修改原始数组。

示例:生成数组 [1, 2, 3, 4, 5] 的随机排列:

import numpy as np
from numpy.random import permutation

arr = np.array([1, 2, 3, 4, 5])

x = permutation(arr)
print(x)

练习

  1. 使用 choice 方法生成 200 个随机数,其中 1 出现的概率为 0.1,2 出现的概率为 0.2,3 出现的概率为 0.7。
  2. 生成 10 个服从指数分布的随机数。
  3. 对数组 [10, 20, 30, 40, 50] 进行随机洗牌。
  4. 生成数组 [6, 7, 8, 9, 10] 元素的随机排列。

解决方案

import numpy as np
from numpy.random import choice, permutation, expon

# 1. 使用 choice 方法生成随机数
random_numbers = choice([1, 2, 3], p=[0.1, 0.2, 0.7], size=200)
print(random_numbers)

# 2. 生成服从指数分布的随机数
exponential_randoms = expon(scale=1, size=10)
print(exponential_randoms)

# 3. 对数组进行随机洗牌
arr = np.array([10, 20, 30, 40, 50])
shuffle(arr)
print(arr)

# 4. 生成数组的随机排列
random_permutation = permutation([6, 7, 8, 9, 10])
print(random_permutation)

使用 Seaborn 可视化分布

简介

Seaborn 是一个基于 Matplotlib 的 Python 数据可视化库,用于创建统计图表。它提供了一系列高级绘图函数,可以轻松创建美观且信息丰富的统计图形。

安装 Seaborn

如果您已经安装了 Python 和 pip,可以使用以下命令安装 Seaborn:

pip install seaborn

如果您使用的是 Jupyter Notebook,可以使用以下命令安装 Seaborn:

!pip install seaborn

绘制分布图

分布图是一种可视化数据分布的图表。它显示了数据集中每个值的出现频率。

在 Seaborn 中,可以使用 sns.distplot() 函数绘制分布图。该函数接受以下参数:

data:要绘制分布的数据。可以是数组、列表或 Pandas 数据框。hist:如果为 True(默认),则绘制直方图;如果为 False,则只绘制密度曲线。kde:如果为 True(默认),则使用核密度估计 (KDE) 来估计数据的分布;如果为 False,则使用直方图。bins:用于创建直方图的直方图数量。norm:用于规范分布的类型。例如,norm='kde' 将使用 KDE 来规范分布。

示例:绘制正态分布

以下示例演示如何使用 Seaborn 绘制正态分布:

import seaborn as sns
import numpy as np

# 生成随机数据
data = np.random.randn(1000)

# 绘制分布图
sns.distplot(data)
plt.show()

该代码将生成 1000 个服从标准正态分布的随机数,并使用 Seaborn 绘制它们的分布图。

示例:绘制自定义分布

以下示例演示如何绘制自定义分布:

import seaborn as sns
import numpy as np

# 生成自定义数据
data = [1, 2, 2, 3, 3, 3, 4, 4, 5, 5, 6, 7, 7, 8, 9]

# 绘制分布图
sns.distplot(data, hist=False, kde=False)
plt.show()

该代码将生成一个包含重复值的自定义数据数组,并使用 Seaborn 绘制它们的分布图,不显示直方图或密度曲线。

练习

  1. 生成 500 个服从均匀分布的随机数,并绘制它们的分布图。
  2. 生成 1000 个服从指数分布的随机数,并绘制它们的分布图。
  3. 从以下数据中绘制分布图:
相关文章
|
5月前
|
机器学习/深度学习 数据可视化 搜索推荐
Python在社交媒体分析中扮演关键角色,借助Pandas、NumPy、Matplotlib等工具处理、可视化数据及进行机器学习。
【7月更文挑战第5天】Python在社交媒体分析中扮演关键角色,借助Pandas、NumPy、Matplotlib等工具处理、可视化数据及进行机器学习。流程包括数据获取、预处理、探索、模型选择、评估与优化,以及结果可视化。示例展示了用户行为、话题趋势和用户画像分析。Python的丰富生态使得社交媒体洞察变得高效。通过学习和实践,可以提升社交媒体分析能力。
89 1
|
7月前
|
机器学习/深度学习 数据可视化 Python
NumPy 均匀分布模拟及 Seaborn 可视化教程
本文介绍了均匀分布和逻辑分布。均匀分布是连续概率分布,所有事件在指定范围内有相等概率,常用于随机数生成。其概率密度函数为 1/(b-a),其中 a 和 b 分别是下限和上限。NumPy 的 `random.uniform()` 可生成均匀分布的随机数。逻辑分布,或 Logistic 分布,常用于 S 形增长现象的建模和机器学习,如逻辑回归。它有两个参数:位置参数 loc 和尺度参数 scale。其概率密度函数涉及 1 + (x-loc)/scale 的倒数平方。
|
3月前
|
数据处理 Python
Python数据转换:从Pandas到NumPy转换
Python数据转换:从Pandas到NumPy转换
66 0
|
4月前
|
存储 数据格式 Python
如何使用 numpy 加载 txt 文件数据?
【8月更文挑战第30天】
138 0
|
5月前
|
数据采集 数据挖掘 大数据
Pandas是Python数据分析的核心库,基于NumPy,提供DataFrame结构处理结构化数据
【7月更文挑战第5天】Pandas是Python数据分析的核心库,基于NumPy,提供DataFrame结构处理结构化数据。它支持缺失值处理(dropna()、fillna())、异常值检测(Z-Score、IQR法)和重复值管理(duplicated()、drop_duplicates())。此外,数据转换包括类型转换(astype())、数据标准化(Min-Max、Z-Score)以及类别编码(get_dummies())。这些功能使得Pandas成为大数据预处理的强大工具。
64 0
|
7月前
|
机器学习/深度学习 数据采集 数据可视化
NumPy 正态分布与 Seaborn 可视化指南
该文档介绍了正态分布(高斯分布),包括它的简介、特征、生成正态分布数据的方法(使用 NumPy 的 `random.normal()` 函数)、如何用 Seaborn 可视化正态分布,以及正态分布的应用(如统计学、机器学习、金融和工程)。还提供了一些练习,如生成特定参数的正态分布随机数并绘图,以及比较不同标准差下的分布形状。最后,给出了练习的解决方案,展示了如何执行这些任务。
|
7月前
|
机器学习/深度学习 数据可视化 Python
NumPy 均匀分布模拟及 Seaborn 可视化教程
本文介绍了均匀分布和逻辑分布。均匀分布是连续概率分布,所有事件在指定范围内有相等概率发生,常用于随机数生成。其概率密度函数为 `f(x) = 1/(b-a)`,其中 a 和 b 分别为下限和上限。NumPy 的 `random.uniform()` 可生成均匀分布的随机数。Seaborn 可用于可视化分布。文中还提供了练习及解决方案,包括生成不同范围的均匀分布随机数、比较分布形状变化及模拟抛硬币实验。逻辑分布则常用于 S 形增长现象的建模,其 PDF 为 `(scale / (π (1 + (x - loc) / scale)^2))`,由位置参数 loc 和尺度参数 scale 定义。
78 0
|
7月前
|
数据可视化 Python
NumPy 二项分布生成与 Seaborn 可视化技巧
二项分布是描述固定次数独立试验中成功次数的概率分布,常用于分析如抛硬币、选择题等二元结果事件。分布由试验次数 n、每次试验的成功概率 p 和成功次数 k 定义。公式为 P(k) = C(n, k) * p^k * (1 - p)^(n - k)。NumPy 的 `random.binomial()` 可生成二项分布随机数,Seaborn 可用于可视化分布。当 n 很大且 p 接近 0.5 时,二项分布近似正态分布。练习包括模拟不同条件下的成功次数分布、比较不同试验次数的影响以及应用二项分布在考试成绩和及格率计算上。
|
3月前
|
机器学习/深度学习 数据处理 Python
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
107 0
|
4月前
|
机器学习/深度学习 数据处理 计算机视觉
NumPy实践宝典:Python高手教你如何轻松玩转数据处理!
【8月更文挑战第22天】NumPy是Python科学计算的核心库,专长于大型数组与矩阵运算,并提供了丰富的数学函数。首先需安装NumPy (`pip install numpy`)。之后可通过创建数组、索引与切片、执行数学与逻辑运算、变换数组形状及类型、计算统计量和进行矩阵运算等操作来实践学习。NumPy的应用范围广泛,从基础的数据处理到图像处理都能胜任,是数据科学领域的必备工具。
64 0