实时计算 Flink版操作报错之遇到错误导致cdc同步失败,多次重启也不行,只能重新启动任务从最新的消费,是什么情况

简介: 在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。

问题一:Flink CDC同样的任务 测试环境和生产都是读同一份binlog日志,生产的出错了缺数据了?


Flink CDC同样的任务 测试环境和生产都是读同一份binlog日志,生产的出错了缺数据了,测试环境的还正常读到数据?


参考回答:

在Flink CDC中,如果测试环境和生产环境读取的都是同一份binlog日志,但生产环境出现了缺数据的情况,而测试环境仍然能够正常读取数据,这可能是由于两者处理数据的速度不同导致的。具体来说,当生产环境中下游节点的处理速度较慢,受到反压影响时,可能会导致部分数据未能成功读取。而在测试环境中,可能因为负载较小或者处理速度较快,所以没有出现同样的缺数情况。

此外,Flink CDC Connectors是Apache Flink的一组源连接器,可以从MySQL、PostgreSQL等数据库直接读取全量和增量数据。在使用的过程中,如果出现性能问题或者数据不一致的情况,可以尝试升级到最新版本的connector jar包,以解决可能存在的bug或者性能瓶颈。同时,也可以通过检查Flink的任务运行状态,以及Web UI的反压工具进行故障排查和性能优化。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/575272



问题二:Flink CDC最近的任务经常出现这个错误 导致cdc同步失败,有啥措施能减少这个情况的发生么?


Flink CDC最近的任务经常出现这个错误 导致cdc同步失败,多次重启也不行,只能重新启动任务从最新的消费,缺的数据需要手动补,有人也有遇到这个情况,有啥措施能减少这个情况的发生么?

Caused by: com.github.shyiko.mysql.binlog.event.deserialization.MissingTableMapEventException: No TableMapEventData has been found for table id:3024. Usually that means that you have started reading binary log 'within the logical event group' (e.g. from WRITE_ROWS and not proceeding TABLE_MAP


参考回答:

这个错误是由于在读取MySQL二进制日志时,没有找到对应的TableMapEventData。这通常意味着你已经开始读取二进制日志的'逻辑事件组'(例如从WRITE_ROWS开始,而不是继续TABLE_MAP),但是缺少了TABLE_MAP事件。

为了解决这个问题,你可以尝试以下方法:

  1. 确保你的Flink CDC任务配置正确,包括binlog服务器地址、用户名、密码等。
  2. 检查你的MySQL数据库中是否存在表id为3024的表,如果不存在,需要创建该表或者更新Flink CDC任务中的表名。
  3. 调整Flink CDC任务的checkpoint策略,减少checkpoint的频率和内存占用,以便更快地恢复任务状态。
  4. 如果问题仍然存在,可以考虑升级Flink CDC和MySQL Connector的版本,看看是否有修复这个问题的更新。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/575270



问题三:Flink连接impala半小时后报错,有遇到的吗?


Flink连接impala半小时后报错,有遇到的吗?


参考回答:

Flink连接Impala半小时后报错,可能是由于以下原因导致的:

  1. 网络问题:检查网络连接是否稳定,是否有防火墙或代理限制。可以尝试使用ping命令测试连接是否正常。
  2. 配置问题:检查Flink的Impala连接配置是否正确,包括主机名、端口号、用户名和密码等。确保配置与实际环境一致。
  3. Impala服务问题:确认Impala服务是否正常运行,可以通过访问Impala Web界面或使用Impala客户端工具来验证。
  4. Flink版本兼容性:确保Flink的版本与Impala客户端库兼容。可以尝试升级或降级Flink版本以解决兼容性问题。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/575026



问题四:用flink sql有遇到过这个问题吗?


用flink sql有遇到过这个问题吗?


参考回答:

这个问题可能是由于缺少org.apache.calcite.plan.ReloptRule类导致的。你可以尝试重新安装或更新相关依赖项来解决这个问题。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/575025



问题五:用RMQSource时候出现这种问题,Flink该怎么解决?


"(reply-code=406, reply-text=PRECONDITION_FAILED - inequivalent arg 'durable' for queue 'my_queue' in vhost '/': received 'true' but current is 'false', class-id=50, method-id=10)", flink 1.17.0,用RMQSource时候出现这种问题,Flink该怎么解决?


参考回答:

这个问题是由于在创建RMQSource时,参数设置不正确导致的。你需要将durable参数设置为true,以便让Flink知道这个队列是持久化的。你可以尝试以下代码:

import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.connectors.rabbitmq.RMQSource;
import org.apache.flink.streaming.connectors.rabbitmq.common.RMQConnectionConfig;
import org.apache.flink.streaming.util.serialization.SimpleStringSchema;
public class RMQExample {
    public static void main(String[] args) throws Exception {
        // 创建RMQ连接配置
        RMQConnectionConfig connectionConfig = new RMQConnectionConfig.Builder()
                .setHost("localhost")
                .setPort(5672)
                .setUserName("guest")
                .setPassword("guest")
                .setVirtualHost("/")
                .build();
        // 创建RMQSource
        RMQSource<String> source = new RMQSource<>(
                "my_queue", // 队列名称
                true, // 设置为持久化队列
                new SimpleStringSchema(), // 序列化方式
                connectionConfig);
        // 创建数据流
        DataStream<String> stream = env.addSource(source);
        // 其他操作...
    }
}


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/575024

相关实践学习
基于Hologres+Flink搭建GitHub实时数据大屏
通过使用Flink、Hologres构建实时数仓,并通过Hologres对接BI分析工具(以DataV为例),实现海量数据实时分析.
实时计算 Flink 实战课程
如何使用实时计算 Flink 搞定数据处理难题?实时计算 Flink 极客训练营产品、技术专家齐上阵,从开源 Flink功能介绍到实时计算 Flink 优势详解,现场实操,5天即可上手! 欢迎开通实时计算 Flink 版: https://cn.aliyun.com/product/bigdata/sc Flink Forward Asia 介绍: Flink Forward 是由 Apache 官方授权,Apache Flink Community China 支持的会议,通过参会不仅可以了解到 Flink 社区的最新动态和发展计划,还可以了解到国内外一线大厂围绕 Flink 生态的生产实践经验,是 Flink 开发者和使用者不可错过的盛会。 去年经过品牌升级后的 Flink Forward Asia 吸引了超过2000人线下参与,一举成为国内最大的 Apache 顶级项目会议。结合2020年的特殊情况,Flink Forward Asia 2020 将在12月26日以线上峰会的形式与大家见面。
相关文章
|
6月前
|
SQL 关系型数据库 Apache
从 Flink 到 Doris 的实时数据写入实践 —— 基于 Flink CDC 构建更实时高效的数据集成链路
本文将深入解析 Flink-Doris-Connector 三大典型场景中的设计与实现,并结合 Flink CDC 详细介绍了整库同步的解决方案,助力构建更加高效、稳定的实时数据处理体系。
2590 0
从 Flink 到 Doris 的实时数据写入实践 —— 基于 Flink CDC 构建更实时高效的数据集成链路
|
9月前
|
数据采集 SQL canal
Amoro + Flink CDC 数据融合入湖新体验
本文总结了货拉拉高级大数据开发工程师陈政羽在Flink Forward Asia 2024上的分享,聚焦Flink CDC在货拉拉的应用与优化。内容涵盖CDC应用现状、数据入湖新体验、入湖优化及未来规划。文中详细分析了CDC在多业务场景中的实践,包括数据采集平台化、稳定性建设,以及面临的文件碎片化、Schema演进等挑战。同时介绍了基于Apache Amoro的湖仓融合架构,通过自优化服务解决小文件问题,提升数据新鲜度与读写平衡。未来将深化Paimon与Amoro的结合,打造更高效的入湖生态与自动化优化方案。
512 1
Amoro + Flink CDC 数据融合入湖新体验
|
8月前
|
消息中间件 SQL 关系型数据库
Flink CDC + Kafka 加速业务实时化
Flink CDC 是一种支持流批一体的分布式数据集成工具,通过 YAML 配置实现数据传输过程中的路由与转换操作。它已从单一数据源的 CDC 数据流发展为完整的数据同步解决方案,支持 MySQL、Kafka 等多种数据源和目标端(如 Delta Lake、Iceberg)。其核心功能包括多样化数据输入链路、Schema Evolution、Transform 和 Routing 模块,以及丰富的监控指标。相比传统 SQL 和 DataStream 作业,Flink CDC 提供更灵活的 Schema 变更控制和原始 binlog 同步能力。
|
6月前
|
存储 分布式计算 数据处理
「48小时极速反馈」阿里云实时计算Flink广招天下英雄
阿里云实时计算Flink团队,全球领先的流计算引擎缔造者,支撑双11万亿级数据处理,推动Apache Flink技术发展。现招募Flink执行引擎、存储引擎、数据通道、平台管控及产品经理人才,地点覆盖北京、杭州、上海。技术深度参与开源核心,打造企业级实时计算解决方案,助力全球企业实现毫秒洞察。
618 0
「48小时极速反馈」阿里云实时计算Flink广招天下英雄
|
运维 数据处理 数据安全/隐私保护
阿里云实时计算Flink版测评报告
该测评报告详细介绍了阿里云实时计算Flink版在用户行为分析与标签画像中的应用实践,展示了其毫秒级的数据处理能力和高效的开发流程。报告还全面评测了该服务在稳定性、性能、开发运维及安全性方面的卓越表现,并对比自建Flink集群的优势。最后,报告评估了其成本效益,强调了其灵活扩展性和高投资回报率,适合各类实时数据处理需求。
|
存储 分布式计算 流计算
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
4049 74
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
zdl
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
630 56
|
消息中间件 关系型数据库 MySQL
Flink CDC 在阿里云实时计算Flink版的云上实践
本文整理自阿里云高级开发工程师阮航在Flink Forward Asia 2024的分享,重点介绍了Flink CDC与实时计算Flink的集成、CDC YAML的核心功能及应用场景。主要内容包括:Flink CDC的发展及其在流批数据处理中的作用;CDC YAML支持的同步链路、Transform和Route功能、丰富的监控指标;典型应用场景如整库同步、Binlog原始数据同步、分库分表同步等;并通过两个Demo展示了MySQL整库同步到Paimon和Binlog同步到Kafka的过程。最后,介绍了未来规划,如脏数据处理、数据限流及扩展数据源支持。
811 0
Flink CDC 在阿里云实时计算Flink版的云上实践
|
存储 关系型数据库 BI
实时计算UniFlow:Flink+Paimon构建流批一体实时湖仓
实时计算架构中,传统湖仓架构在数据流量管控和应用场景支持上表现良好,但在实际运营中常忽略细节,导致新问题。为解决这些问题,提出了流批一体的实时计算湖仓架构——UniFlow。该架构通过统一的流批计算引擎、存储格式(如Paimon)和Flink CDC工具,简化开发流程,降低成本,并确保数据一致性和实时性。UniFlow还引入了Flink Materialized Table,实现了声明式ETL,优化了调度和执行模式,使用户能灵活调整新鲜度与成本。最终,UniFlow不仅提高了开发和运维效率,还提供了更实时的数据支持,满足业务决策需求。

相关产品

  • 实时计算 Flink版