实时计算 Flink版产品使用合集之在进行全量同步时,有两张表的数据没有正确进入,并且ID字段为null,该怎么处理

简介: 实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。

问题一:Flink CDC实时采集mongodb,是不是只支持mongo集群?


2023-11-24 06:56:17,588 INFO org.apache.flink.runtime.executiongraph.ExecutionGraph [] - Source: ftp_logs[1] (1/1) (00a811d7e67b1745da551cb75b99613e_bc764cd8ddf7a0cff126f51c16239658_0_37) switched from RUNNING to FAILED on 10.44.0.16:40629-417690 @ 10.44.0.16 (dataPort=37924).

com.ververica.cdc.connectors.shaded.org.apache.kafka.connect.errors.ConnectException: com.mongodb.MongoCommandException: Command failed with error 40573 (Location40573): 'The $changeStream stage is only supported on replica sets' on server 10.191.20.100:27017. The full response is {"ok": 0.0, "errmsg": "The $changeStream stage is only supported on replica sets", "code": 40573, "codeName": "Location40573"}

at com.mongodb.kafka.connect.source.MongoSourceTask.setCachedResultAndResumeToken(MongoSourceTask.java:566) ~[flink-sql-connector-mongodb-cdc-2.3.0.jar:2.3.0]

at com.mongodb.kafka.connect.source.MongoSourceTask.start(MongoSourceTask.java:196) ~[flink-sql-connector-mongodb-cdc-2.3.0.jar:2.3.0]

at com.ververica.cdc.connectors.mongodb.internal.MongoDBConnectorSourceTask.start(MongoDBConnectorSourceTask.java:101) ~[flink-sql-connector-mongodb-cdc-2.3.0.jar:2.3.0]

at io.debezium.embedded.EmbeddedEngine.run(EmbeddedEngine.java:759) ~[flink-sql-connector-mongodb-cdc-2.3.0.jar:2.3.0]

Flink CDC实时采集mongodb,是不是只支持mongo集群?


参考回答:

是的,Flink CDC 实时采集 MongoDB 数据时,只支持在 MongoDB 集群上使用。这是因为 MongoDB 的 Change Streams 功能(用于捕获数据变更)仅在 replica set 或者 sharded cluster 中可用。

如果你正在尝试从单节点 MongoDB 实例中收集数据,你需要将其转换为一个 replica set 或者 sharded cluster。以下是一些基本步骤:

  1. 创建 replica set
  • 在 MongoDB shell 中运行 rs.initiate() 命令以初始化一个新的 replica set。
  • 将其他 mongod 实例添加到该 replica set 中,以便提高容错性和可用性。
  1. 配置 Flink CDC 连接器
  • 更新 Flink CDC 连接器的配置,使其指向新的 replica set。
  1. 重新启动作业
  • 重新启动你的 Flink CDC 作业,它现在应该能够成功地从 MongoDB replica set 中读取数据了。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/574040



问题二:Flink CDC连kafka的时候,如果消费掉的消息,能删除掉吗?


Flink CDC连kafka的时候,如果消费掉的消息,能删除掉吗?


参考回答:

是的,Flink CDC在连接到Kafka时,可以消费掉的消息并将其删除。这是因为Flink CDC会监控并捕获数据库的变动,包括数据的插入、更新和删除,然后将这些变更按发生的顺序完整记录下来,写入到消息中间件中以供其他服务进行订阅及消费。当Flink CDC消费掉Kafka中的消息后,它会自动删除这些消息,以防止重复消费。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/574038



问题三:Flink CDC 可以读取虚拟列op吗?


Flink CDC 可以读取虚拟列op吗?想基于op,进行不同的数据操作


参考回答:

Flink CDC 可以读取虚拟列 op,但是需要使用自定义的 DebeziumDeserializationSchema 来解析该列。

具体来说,您需要在 DebeziumDeserializationSchemaBuilder 中添加一个名为 op 的列,并指定其数据类型和反序列化器。例如:

DebeziumDeserializationSchema<MyEvent> deserializationSchema = DebeziumDeserializationSchemaBuilder<MyEvent>.create()
    .schemaName("my_schema")
    .databaseList(Arrays.asList("mydb"))
    .tableList(Arrays.asList("mytable"))
    .column("id", DataTypes.BIGINT())
    .column("name", DataTypes.STRING())
    .column("op", DataTypes.STRING()) // 添加虚拟列 op
    .deserializer(new MyEventDeserializer())
    .build();

然后,您可以在您的应用程序中使用 FlinkCDC 连接器来读取数据流,并根据 op 列的值执行不同的操作。例如:

FlinkCDC<MyEvent> cdc = new FlinkCDC<>(env, mySourceFunction, deserializationSchema);
DataStream<MyEvent> stream = env.addSource(cdc);
stream.filter(event -> event.getOp().equals("INSERT")) // 根据 op 列的值过滤数据流
      .map(event -> { /* 对 INSERT 事件执行某些操作 */ return event; })
      .otherwise(event -> { /* 对其他事件执行某些操作 */ return event; });


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/574037



问题四:我使用flinkcdc的sql形式进行全量同步,4张表,有两张表数据没进去,,id怎么是null呢?


我使用flinkcdc的sql形式进行全量同步,4张表,有两张表数据没进去,看日志,id怎么是null呢?


参考回答:

这个问题可能是由于以下原因导致的:

  1. 表结构不一致:请检查四张表的结构是否一致,包括字段名、数据类型等。如果有任何不一致,需要修改表结构以保持一致。
  2. 数据转换问题:在使用Flink CDC进行全量同步时,可能需要对源表中的数据进行一些转换操作,例如将日期字符串转换为日期对象等。请检查这些转换操作是否正确执行。
  3. Flink CDC配置问题:请检查Flink CDC的配置是否正确。例如,确保sink.connector设置为正确的连接器名称,如mysql-cdc。同时,检查source.table-includessource.table-excludes配置项,以确保只同步指定的表。
  4. 日志级别问题:请检查Flink CDC的日志级别是否设置得足够高,以便查看详细的错误信息。可以尝试将日志级别设置为DEBUGINFO,以获取更详细的信息。
  5. 网络问题:请检查网络连接是否正常,以及防火墙设置是否允许Flink CDC与MySQL服务器之间的通信。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/574035

相关实践学习
基于Hologres+Flink搭建GitHub实时数据大屏
通过使用Flink、Hologres构建实时数仓,并通过Hologres对接BI分析工具(以DataV为例),实现海量数据实时分析.
实时计算 Flink 实战课程
如何使用实时计算 Flink 搞定数据处理难题?实时计算 Flink 极客训练营产品、技术专家齐上阵,从开源 Flink功能介绍到实时计算 Flink 优势详解,现场实操,5天即可上手! 欢迎开通实时计算 Flink 版: https://cn.aliyun.com/product/bigdata/sc Flink Forward Asia 介绍: Flink Forward 是由 Apache 官方授权,Apache Flink Community China 支持的会议,通过参会不仅可以了解到 Flink 社区的最新动态和发展计划,还可以了解到国内外一线大厂围绕 Flink 生态的生产实践经验,是 Flink 开发者和使用者不可错过的盛会。 去年经过品牌升级后的 Flink Forward Asia 吸引了超过2000人线下参与,一举成为国内最大的 Apache 顶级项目会议。结合2020年的特殊情况,Flink Forward Asia 2020 将在12月26日以线上峰会的形式与大家见面。
相关文章
|
5月前
|
SQL 人工智能 JSON
Flink 2.1 SQL:解锁实时数据与AI集成,实现可扩展流处理
简介:本文整理自阿里云高级技术专家李麟在Flink Forward Asia 2025新加坡站的分享,介绍了Flink 2.1 SQL在实时数据处理与AI融合方面的关键进展,包括AI函数集成、Join优化及未来发展方向,助力构建高效实时AI管道。
915 43
|
5月前
|
SQL 人工智能 JSON
Flink 2.1 SQL:解锁实时数据与AI集成,实现可扩展流处理
本文整理自阿里云的高级技术专家、Apache Flink PMC 成员李麟老师在 Flink Forward Asia 2025 新加坡[1]站 —— 实时 AI 专场中的分享。将带来关于 Flink 2.1 版本中 SQL 在实时数据处理和 AI 方面进展的话题。
376 0
Flink 2.1 SQL:解锁实时数据与AI集成,实现可扩展流处理
|
5月前
|
SQL 关系型数据库 Apache
从 Flink 到 Doris 的实时数据写入实践 —— 基于 Flink CDC 构建更实时高效的数据集成链路
本文将深入解析 Flink-Doris-Connector 三大典型场景中的设计与实现,并结合 Flink CDC 详细介绍了整库同步的解决方案,助力构建更加高效、稳定的实时数据处理体系。
2393 0
从 Flink 到 Doris 的实时数据写入实践 —— 基于 Flink CDC 构建更实时高效的数据集成链路
|
6月前
|
存储 消息中间件 搜索推荐
京东零售基于Flink的推荐系统智能数据体系
摘要:本文整理自京东零售技术专家张颖老师,在 Flink Forward Asia 2024 生产实践(二)专场中的分享,介绍了基于Flink构建的推荐系统数据,以及Flink智能体系带来的智能服务功能。内容分为以下六个部分: 推荐系统架构 索引 样本 特征 可解释 指标 Tips:关注「公众号」回复 FFA 2024 查看会后资料~
458 1
京东零售基于Flink的推荐系统智能数据体系
|
机器学习/深度学习 SQL 关系型数据库
【MySQL进阶之路丨第十一篇】一文带你精通MySQL NULL值处理、正则表达式
【MySQL进阶之路丨第十一篇】一文带你精通MySQL NULL值处理、正则表达式
257 0
|
SQL 关系型数据库 MySQL
实时计算 Flink版产品使用合集之从MySQL同步数据到Doris时,历史数据时间字段显示为null,而增量数据部分的时间类型字段正常显示的原因是什么
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStreamAPI、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
SQL 关系型数据库 MySQL
python在mysql中插入或者更新null空值
这段代码是Python操作MySQL数据库的示例。它执行SQL查询从表`a_kuakao_school`中选取`id`,`university_id`和`grade`,当`university_id`大于0时按升序排列。然后遍历结果,根据`row[4]`的值决定`grade`是否为`NULL`。若不为空,`grade`被格式化为字符串;否则,设为`NULL`。接着构造UPDATE语句更新`university`表中对应`id`的`grade`值,并提交事务。重要的是,字符串`NULL`不应加引号,否则更新会失败。
394 2
|
SQL 关系型数据库 MySQL
在 MySQL 中使用 IS NULL
【8月更文挑战第12天】
1072 0
在 MySQL 中使用 IS NULL
|
SQL 关系型数据库 MySQL
mysql不等于<>取特定值反向条件的时候字段有null值或空值读取不到数据
对于数据库开发的专业人士来说,理解NULL的特性并知道如何正确地在查询中处理它们是非常重要的。以上所介绍的技巧和实例可以帮助你更精准地执行数据库查询,并确保数据的完整性和准确性。在编写代码和设计数据库结构时,牢记这些细节将有助于你避免许多常见的错误,提高数据库应用的质量与性能。
545 0
|
SQL 存储 索引
MySQL设计规约问题之为什么应该把字段定义为NOT NULL并且提供默认值
MySQL设计规约问题之为什么应该把字段定义为NOT NULL并且提供默认值

热门文章

最新文章

相关产品

  • 实时计算 Flink版