实时计算 Flink版产品使用合集之读取 Kafka 和 MongoDB 的 Managed Memory 使用情况不同是什么导致的

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。

问题一:Flink CDC有老师遇到过 polarDB 的 mysql-cdc 有问题的?


Flink CDC有老师遇到过 polarDB 的 mysql-cdc 有问题的?按照 flink vvp 的官方文档配置的,现在看起来只有 gtid-set 能读取到数据


参考回答:

Flink CDC在处理polarDB的mysql-cdc时,如果只有gtid-set能读取到数据,那可能是因为其他选项未能正确配置。Flink的MySQL CDC连接器支持读取MySQL数据库的快照数据和增量数据。对于PolarDB-X,它展示了如何借助Flink-CDC将数据导入至Elasticsearch,这显示了PolarDB-X的增量订阅能力。

确保您的flink版本与mysql cdc版本兼容,例如,flink 1.17.2配合flink mysql cdc 2.4.2是一个例子。此外,检查您的配置以确保所有必要的参数都已正确设置,特别是与binlog位置和GTID相关的参数。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/574046



问题二:iceberg数据库的Flink cdc,是不是也是用postgreSQL数据库的cdc?


iceberg数据库的Flink cdc,是不是也是用postgreSQL数据库的cdc?


参考回答:

不是的,虽然Iceberg数据库和PostgreSQL数据库都支持Flink CDC,但它们使用的具体实现方式是不同的。Flink CDC是针对特定数据库的,因此对于不同的数据库,Flink会使用不同的CDC connector。对于PostgreSQL,Flink使用PostgreSQLSource这样的source function来读取CDC数据。而对于Iceberg数据库,Flink可能会使用其他的source function或者data source来实现CDC。具体的实现方式会根据数据库的特性以及Flink的支持情况来确定。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/574045



问题三:为啥cdc会把taskmanager的Managed Memory占满?


Flink CDC问一下flinksql 读取kafka 和 flinksql mongodb-cdc

为啥cdc会把taskmanager的Managed Memory占满?而读取kafka的是0


参考回答:

CDC(Change Data Capture)是一种用于捕获数据库中数据变更的技术。当使用Flink CDC时,它会将源数据库中的变更事件读取出来,并将其转换为流式数据进行处理。

在处理过程中,Flink CDC会将读取到的变更事件存储在TaskManager的Managed Memory中。这是因为Flink CDC需要对每个变更事件进行一些额外的处理,例如解析、转换和验证等操作。这些操作需要占用一定的内存空间,因此会导致TaskManager的Managed Memory被占满。

而读取Kafka的数据并不会占用大量的Managed Memory,因为Kafka是一个分布式消息队列系统,它的消息是以二进制形式存储在Broker上的。当使用Flink SQL读取Kafka数据时,Flink会将消息反序列化为Java对象,并进行一些处理操作。由于Kafka的消息是分布式存储的,因此读取Kafka数据的内存消耗相对较小。

对于MongoDB CDC,同样也会占用一定的Managed Memory。因为MongoDB是一个文档型数据库,它的数据是以BSON格式存储在磁盘上的。当使用Flink SQL读取MongoDB CDC数据时,Flink会将BSON格式的数据反序列化为Java对象,并进行一些处理操作。由于MongoDB的数据是存储在磁盘上的,因此读取MongoDB CDC数据的内存消耗相对较大。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/574043



问题四:Flink CDC可以同步mysql到分区表???指定某列为分区字段


Flink CDC可以同步mysql到分区表???指定某列为分区字段


参考回答:

是的,Flink CDC可以同步MySQL到分区表。在Flink CDC中,您可以使用DebeziumDeserializationSchema来指定要读取的MySQL表和列,并使用DebeziumDeserializationSchemaBuilder来构建DebeziumDeserializationSchema对象。

对于分区表,您需要使用DebeziumDeserializationSchemaBuilder中的partitionColumns方法来指定分区字段。例如,如果您有一个名为orders的分区表,其中包含一个名为order_date的分区字段,则可以使用以下代码:

DebeziumDeserializationSchema<Order> deserializationSchema = DebeziumDeserializationSchemaBuilder<Order>.create()
    .schemaName("mysql")
    .databaseList(Arrays.asList("mydb"))
    .tableList(Arrays.asList("orders"))
    .column("order_id", DataTypes.BIGINT())
    .column("customer_id", DataTypes.INT())
    .column("order_date", DataTypes.DATE())
    .deserializer(new OrderDeserializer())
    .partitionColumns("order_date")
    .build();

在上面的代码中,我们指定了要读取的表名、列名和反序列化器,并使用partitionColumns方法指定了分区字段。然后,我们可以将此DebeziumDeserializationSchema对象传递给Flink CDC连接器以进行数据同步。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/574042



问题五:请问这种反压如何处理呀?百度说Flink CDC有处理这块的机制。但不知道官网上是哪篇文章?


请问这种反压如何处理呀?百度说Flink CDC有处理这块的机制。但不知道官网上是哪篇文章?


参考回答:

在处理Flink CDC的反压问题时,可以参考Flink官方文档中关于反压机制和处理的相关文章。Flink的反压机制主要是通过在网络流控中实现的一种保障机制,用于确保应用在7*24小时运行过程中,当某个处理单元由于到来的数据忽然增加,暂时性超出其处理能力时,不会出现数据丢失现象或者因为系统资源耗尽而导致应用崩溃。

具体来说,当接收者队列满了后,发送者就会被阻塞,从而产生反压。Flink 1.5之后实现了自己托管的credit-based流控机制,在应用层模拟TCP的流控机制。此外,Flink还优化了反压检测的逻辑(使用基于任务 Mailbox 计时,而不在基于堆栈采样),并且重新实现了作业图的UI展示:Flink现在在UI上通过颜色和数值来展示繁忙和反压的程度。

在处理反压问题时,可以先确定反压的位置,然后根据反压的情况分析,找到性能瓶颈的地方,进行相应的优化。例如,如果反压出现在Sink,可能是因为Sink处理数据缓慢导致的,这时可能需要优化Sink的处理逻辑或者增加Sink的并行度。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/574041

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
2月前
|
运维 数据处理 数据安全/隐私保护
阿里云实时计算Flink版测评报告
该测评报告详细介绍了阿里云实时计算Flink版在用户行为分析与标签画像中的应用实践,展示了其毫秒级的数据处理能力和高效的开发流程。报告还全面评测了该服务在稳定性、性能、开发运维及安全性方面的卓越表现,并对比自建Flink集群的优势。最后,报告评估了其成本效益,强调了其灵活扩展性和高投资回报率,适合各类实时数据处理需求。
|
12天前
|
数据可视化 大数据 数据处理
评测报告:实时计算Flink版产品体验
实时计算Flink版提供了丰富的文档和产品引导,帮助初学者快速上手。其强大的实时数据处理能力和多数据源支持,满足了大部分业务需求。但在高级功能、性能优化和用户界面方面仍有改进空间。建议增加更多自定义处理函数、数据可视化工具,并优化用户界面,增强社区互动,以提升整体用户体验和竞争力。
28 2
|
12天前
|
运维 搜索推荐 数据安全/隐私保护
阿里云实时计算Flink版测评报告
阿里云实时计算Flink版在用户行为分析与标签画像场景中表现出色,通过实时处理电商平台用户行为数据,生成用户兴趣偏好和标签,提升推荐系统效率。该服务具备高稳定性、低延迟、高吞吐量,支持按需计费,显著降低运维成本,提高开发效率。
33 1
|
15天前
|
运维 数据处理 Apache
数据实时计算产品对比测评报告:阿里云实时计算Flink版
数据实时计算产品对比测评报告:阿里云实时计算Flink版
|
2月前
|
存储 运维 监控
阿里云实时计算Flink版的评测
阿里云实时计算Flink版的评测
56 15
|
13天前
|
运维 监控 Serverless
阿里云实时计算Flink版评测报告
阿里云实时计算Flink版是一款全托管的Serverless实时流处理服务,基于Apache Flink构建,提供企业级增值功能。本文从稳定性、性能、开发运维、安全性和成本效益等方面全面评测该产品,展示其在实时数据处理中的卓越表现和高投资回报率。
|
14天前
|
存储 运维 监控
实时计算Flink版在稳定性、性能、开发运维、安全能力等等跟其他引擎及自建Flink集群比较。
实时计算Flink版在稳定性、性能、开发运维和安全能力等方面表现出色。其自研的高性能状态存储引擎GeminiStateBackend显著提升了作业稳定性,状态管理优化使性能提升40%以上。核心性能较开源Flink提升2-3倍,资源利用率提高100%。提供一站式开发管理、自动化运维和丰富的监控告警功能,支持多语言开发和智能调优。安全方面,具备访问控制、高可用保障和全链路容错能力,确保企业级应用的安全与稳定。
26 0
|
2月前
|
运维 分布式计算 监控
评测报告:阿里云实时计算Flink版
本评测主要针对阿里云实时计算Flink版在用户行为分析中的应用。作为一名数据分析师,我利用该服务处理了大量日志数据,包括用户点击流和登录行为。Flink的强大实时处理能力让我能够迅速洞察用户行为变化,及时调整营销策略。此外,其卓越的性能和稳定性显著降低了运维负担,提升了项目效率。产品文档详尽且易于理解,但建议增加故障排查示例。
|
2月前
|
机器学习/深度学习 运维 监控
阿里云实时计算Flink版体验评测
阿里云实时计算Flink版提供了完善的产品内引导和丰富文档,使初学者也能快速上手。产品界面引导清晰,内置模板简化了流处理任务。官方文档全面,涵盖配置、开发、调优等内容。此外,该产品在数据开发和运维方面表现优秀,支持灵活的作业开发和自动化运维。未来可增强复杂事件处理、实时可视化展示及机器学习支持,进一步提升用户体验。作为阿里云大数据体系的一部分,它能与DataWorks、MaxCompute等产品无缝联动,构建完整的实时数据处理平台。
|
21天前
|
SQL 运维 大数据
大数据实时计算产品的对比测评
在使用多种Flink实时计算产品后,我发现Flink凭借其流批一体的优势,在实时数据处理领域表现出色。它不仅支持复杂的窗口机制与事件时间处理,还具备高效的数据吞吐能力和精准的状态管理,确保数据处理既快又准。此外,Flink提供了多样化的编程接口和运维工具,简化了开发流程,但在界面友好度上还有提升空间。针对企业级应用,Flink展现了高可用性和安全性,不过价格因素可能影响小型企业的采纳决策。未来可进一步优化文档和自动化调优工具,以提升用户体验。
90 0

相关产品

  • 实时计算 Flink版