实时计算 Flink版产品使用合集之同步MySQL时,发现Timestamp字段少八个小时,该如何解决

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
简介: 实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。

问题一:Flink CDC用flinksql方式采集多张表,是每张表启动一个java进程吗?


Flink CDC用flinksql方式采集多张表,是每张表启动一个java进程吗?怎么处理比较合理?


参考回答:

Flink SQL为Flink提供了SQL接口,使得用户可以使用SQL语句进行数据的抽取、转换和加载(ETL)操作。在使用Flink SQL进行CDC操作时,不需要为每张表启动一个Java进程。

Flink SQL支持多表插入(Multi-table insert),你可以一次性的从多张表中抽取数据,然后将这些数据插入到你的目标表中。以下是一个简单的例子:

INSERT INTO my_target_table
SELECT * FROM source_table1
UNION ALL
SELECT * FROM source_table2;

在这个例子中,我们从source_table1source_table2两张源表中抽取数据,然后将这些数据插入到my_target_table目标表中。

在处理大量的表时,你可以考虑使用分区(Partition)来提高性能。通过分区,你可以将数据分散到多个并行任务中处理,从而提高处理速度。你可以根据表的名称、日期等字段进行分区。

例如,你可以这样分区:

INSERT INTO my_target_table
PARTITION BY YEAR(timestamp_column), MONTH(timestamp_column)
SELECT * FROM source_table1
UNION ALL
SELECT * FROM source_table2;

在这个例子中,我们根据timestamp_column的年份和月份对数据进行分区,然后将每个分区的数据插入到对应的my_target_table分区中。

需要注意的是,Flink SQL只支持静态分区,也就是说,你需要在运行前确定分区的数量。如果你需要根据数据动态地创建分区,你可能需要使用Flink的DataStream API进行编程实现。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/574284



问题二:Flink CDC中mysq cdc 同步的时候Timestamp 少八个小时怎么处理?


Flink CDC中mysq cdc 同步的时候Timestamp 少八个小时怎么处理?


参考回答:

在Flink CDC同步MySQL时,如果发现Timestamp字段少八个小时,这通常是由于时区设置不正确导致的。具体地说,当Flink采用默认的UTC时区读取MySQL中的timestamp类型字段时,由于MySQL中的时间是按照特定时区(例如Asia/Shanghai)存储的,这就导致了Flink读取出来的时间与MySQL中的时间相差了8个小时。

解决这个问题的一种方法是在Flink的配置文件中添加如下配置:'server-time-zone' = 'Asia/Shanghai'。这样,Flink就会使用正确的时区来读取MySQL中的时间字段。另一种方法是在SQL语句中使用LOCALTIMESTAMP或者手动给时间戳加8小时。

另外,值得注意的是,从Flink 1.13版本开始,对于处理时间相关的操作,不会再出现因为时区问题导致的时间差异。所以,也可以考虑升级Flink的版本来解决这个问题。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/574283



问题三:Flink CDC中database 为什么ORCLDB,不是ORCL吗?


Flink CDC中database 为什么ORCLDB,不是ORCL吗?


参考回答:

在 Flink CDC 中,ORCLDB 是指 Oracle 数据库的一种特定的模式(Schema)名称,而不是数据库本身的名称。这个名称的选择并不固定,可以根据实际情况进行自定义。

通常,在 Flink CDC 的配置中,需要指定要读取的数据库名称和表名称。如果您的 Oracle 数据库名称是 ORCL,那么可以在 Flink CDC 的配置中使用它。

例如,以下是一个 Flink CDC 配置的示例:

source:
  type: mysql-cdc # 使用 MySQL CDC
  hostname: localhost
  port: 3306
  username: root
  password: password
  server-id: 1
  database-name: ORCL # 指定数据库名称为 ORCL
  table-name: my_table

请注意,根据实际情况,您可能需要根据 Flink CDC 对特定数据库的支持情况或使用的特定 CDC 连接器进行相应的配置调整。确保根据您的数据库环境和需求正确设置 database-name 和其他相关的配置项。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/574282



问题四:Flink CDC两个数据库都是新建的,都启动了数据捕获等等配置,可以帮忙看看吗?


Flink CDC用sqlservercdc,版本是2.4.2,,'database-name' = '数据库',数据库有中划线-,好像没法捕获数据,我把图里数据库改成没带中划线的数据库,就可以进行cdc捕获,两个数据库都是新建的,都启动了数据捕获等等配置,可以帮忙看看吗,是我哪里操作有问题吗?


参考回答:

这个问题可能是由于在 Flink SQL 中,database-name 的值需要使用双引号(")进行转义。你可以在 database-name 后面加上双引号,例如:

INSERT INTO my_sink
SELECT *
FROM "数据库".cdc.tbl_name;

这样应该就能正确识别带有中划线(-)的数据库名称了。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/574281



问题五:Flink CDC这个connector在哪里可以找到?


Flink CDC这个connector在哪里可以找到?flink sql 把数据插入到clickhouse


参考回答:

Flink CDC connector可以在Flink的官方网站上找到,具体位置是:https://ci.apache.org/projects/flink/flink-docs-release-1.13/zh/docs/connectors/table/cdc/

关于将数据插入到ClickHouse的问题,可以使用Flink SQL中的INSERT INTO语句来实现。具体的语法如下:

INSERT INTO clickhouse_table (column1, column2, ...) VALUES (value1, value2, ...);

其中,clickhouse_table是要插入数据的表名,column1、column2等是表中的列名,value1、value2等是要插入的数据值。需要注意的是,在执行INSERT INTO语句之前,需要先创建好对应的ClickHouse表,并且确保该表与要插入的数据格式一致。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/574279

相关实践学习
基于Hologres+Flink搭建GitHub实时数据大屏
通过使用Flink、Hologres构建实时数仓,并通过Hologres对接BI分析工具(以DataV为例),实现海量数据实时分析.
实时计算 Flink 实战课程
如何使用实时计算 Flink 搞定数据处理难题?实时计算 Flink 极客训练营产品、技术专家齐上阵,从开源 Flink功能介绍到实时计算 Flink 优势详解,现场实操,5天即可上手! 欢迎开通实时计算 Flink 版: https://cn.aliyun.com/product/bigdata/sc Flink Forward Asia 介绍: Flink Forward 是由 Apache 官方授权,Apache Flink Community China 支持的会议,通过参会不仅可以了解到 Flink 社区的最新动态和发展计划,还可以了解到国内外一线大厂围绕 Flink 生态的生产实践经验,是 Flink 开发者和使用者不可错过的盛会。 去年经过品牌升级后的 Flink Forward Asia 吸引了超过2000人线下参与,一举成为国内最大的 Apache 顶级项目会议。结合2020年的特殊情况,Flink Forward Asia 2020 将在12月26日以线上峰会的形式与大家见面。
相关文章
|
12月前
|
安全 关系型数据库 MySQL
如何将数据从MySQL同步到其他系统
【10月更文挑战第17天】如何将数据从MySQL同步到其他系统
1559 0
|
7月前
|
关系型数据库 MySQL Shell
MySQL 备份 Shell 脚本:支持远程同步与阿里云 OSS 备份
一款自动化 MySQL 备份 Shell 脚本,支持本地存储、远程服务器同步(SSH+rsync)、阿里云 OSS 备份,并自动清理过期备份。适用于数据库管理员和开发者,帮助确保数据安全。
|
7月前
|
消息中间件 关系型数据库 MySQL
基于 Flink CDC YAML 的 MySQL 到 Kafka 流式数据集成
基于 Flink CDC YAML 的 MySQL 到 Kafka 流式数据集成
671 0
|
8月前
|
Java 关系型数据库 MySQL
SpringBoot 通过集成 Flink CDC 来实时追踪 MySql 数据变动
通过详细的步骤和示例代码,您可以在 SpringBoot 项目中成功集成 Flink CDC,并实时追踪 MySQL 数据库的变动。
1832 45
|
8月前
|
消息中间件 关系型数据库 MySQL
基于 Flink CDC YAML 的 MySQL 到 Kafka 流式数据集成
本教程展示如何使用Flink CDC YAML快速构建从MySQL到Kafka的流式数据集成作业,涵盖整库同步和表结构变更同步。无需编写Java/Scala代码或安装IDE,所有操作在Flink CDC CLI中完成。首先准备Flink Standalone集群和Docker环境(包括MySQL、Kafka和Zookeeper),然后通过配置YAML文件提交任务,实现数据同步。教程还介绍了路由变更、写入多个分区、输出格式设置及上游表名到下游Topic的映射等功能,并提供详细的命令和示例。最后,包含环境清理步骤以确保资源释放。
596 2
基于 Flink CDC YAML 的 MySQL 到 Kafka 流式数据集成
|
10月前
|
监控 关系型数据库 MySQL
Flink CDC MySQL同步MySQL错误记录
在使用Flink CDC同步MySQL数据时,常见的错误包括连接错误、权限错误、表结构变化、数据类型不匹配、主键冲突和
414 17
|
2月前
|
存储 分布式计算 数据处理
「48小时极速反馈」阿里云实时计算Flink广招天下英雄
阿里云实时计算Flink团队,全球领先的流计算引擎缔造者,支撑双11万亿级数据处理,推动Apache Flink技术发展。现招募Flink执行引擎、存储引擎、数据通道、平台管控及产品经理人才,地点覆盖北京、杭州、上海。技术深度参与开源核心,打造企业级实时计算解决方案,助力全球企业实现毫秒洞察。
375 0
「48小时极速反馈」阿里云实时计算Flink广招天下英雄
|
运维 数据处理 数据安全/隐私保护
阿里云实时计算Flink版测评报告
该测评报告详细介绍了阿里云实时计算Flink版在用户行为分析与标签画像中的应用实践,展示了其毫秒级的数据处理能力和高效的开发流程。报告还全面评测了该服务在稳定性、性能、开发运维及安全性方面的卓越表现,并对比自建Flink集群的优势。最后,报告评估了其成本效益,强调了其灵活扩展性和高投资回报率,适合各类实时数据处理需求。
|
11月前
|
存储 分布式计算 流计算
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
3259 73
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎

热门文章

最新文章

相关产品

  • 实时计算 Flink版
  • 推荐镜像

    更多