实时计算 Flink版产品使用合集之使用 MySQL CDC 进行数据同步时,设置 server_id 参数如何解决

简介: 实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。

问题一:Flink CDC中oralce cdc必须要在库级别开启ALTER DATABASE ADD 吗?


Flink CDC中oralce cdc必须要在库级别开启ALTER DATABASE ADD SUPPLEMENTAL LOG DATA吗?不能只执行ALTER TABLE inventory.customers ADD SUPPLEMENTAL LOG DATA (ALL) COLUMNS;这个语句就可以吗?


参考回答:

在Flink CDC中,Oracle CDC需要使用ALTER DATABASE ADD SUPPLEMENTAL LOG DATA语句来开启日志数据。这个语句会在整个数据库级别添加补充日志数据,而不仅仅是在特定的表上。

如果你只想在特定的表上添加补充日志数据,可以使用ALTER TABLE语句,如你提到的:

ALTER TABLE inventory.customers ADD SUPPLEMENTAL LOG DATA (ALL) COLUMNS;

但是,这只会为inventory.customers表添加补充日志数据,而不是整个数据库。因此,如果你想在Oracle CDC中使用Flink CDC,你需要确保在整个数据库级别开启补充日志数据。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/574894



问题二:Flink CDC如果binlog找不到配置的timestamp,任务是什么运行情况?


Flink CDC中mysql用timestamp启动,如果binlog找不到配置的timestamp,任务是什么运行情况?


参考回答:

在Flink CDC中,如果MySQL使用timestamp作为启动点,并且bin在Flink CDC中,如果MySQL使用timestamp作为启动点,并且binlog找不到配置的timestamp,任务将会以初始状态运行。

具体来说,当Flink CDC任务启动时,它会尝试从MySQL的binlog中找到指定的timestamp作为起始点。如果找不到该timestamp,Flink CDC会认为没有可用的数据,因此不会进行任何消费操作。

在这种情况下,Flink CDC任务将处于初始状态,等待找到合适的起始点。一旦找到了匹配的timestamp,任务将会开始消费数据并进行处理。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/574893



问题三:Flink CDC中pg支持 scan.newly-added-table.enabled=true ?


Flink CDC中pg支持 scan.newly-added-table.enabled=true ?


参考回答:

是的,Flink CDC支持在pg中启用scan.newly-added-table.enabled=true选项。这个选项可以用于扫描新添加的表,以便Flink CDC能够捕获这些新表的数据变更。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/574892



问题四:flink sql cdc数据统计


Flink sql cdc做实时数据统计的时候,我想统计当天的数据。加了时间过滤条件,但是每到第二天还是会把之前的数据加上,要重启一次任务才会对,这种应该怎么处理呢?


参考回答:

这个问题可能是因为你的Flink SQL CDC任务在处理时间过滤条件时,没有正确地处理时间的边界。为了解决这个问题,你可以尝试以下步骤:

  1. 检查时间过滤条件的定义:确保你的时间过滤条件正确地定义了每天的开始和结束。例如,你可以使用CURRENT_DATE函数来获取当前日期的开始,然后加上一天的间隔来计算第二天的开始。
  2. 使用时间窗口:在Flink中,你可以使用时间窗口来处理时间序列数据。例如,你可以定义一个一天的时间窗口,然后使用这个窗口来处理每天的数据。
  3. 使用事件时间:在Flink中,你可以使用事件时间来处理时间序列数据。事件时间是每个事件发生的实际时间,而不是每个事件被处理的时间。通过使用事件时间,你可以确保你的任务在处理数据时,总是按照事件发生的实际时间进行处理。
  4. 检查任务的启动方式:如果你的任务是通过Crond或者其他定时任务的方式启动的,那么你需要确保每次任务启动时,都会从最新的数据开始处理。否则,你的任务可能会在处理昨天的数据之后,又重新开始处理今天的数据。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/574330



问题五:Flink CDC中mysql cdc 的那个server_id 设置的话,一般是怎么设置的?


Flink CDC中mysql cdc 的那个server_id 设置的话,一般是怎么设置的来,我设置 44200 报超出范围了,这个的设置范围不太了解?


参考回答:

在 Flink CDC 中使用 MySQL CDC 进行数据同步时,需要设置 server_id 参数来唯一标识 MySQL 实例。下面是一些常见的设置方法:

  1. 随机生成:可以生成一个随机的 server_id 值,确保每个 MySQL 实例都有不同的值。可以使用以下语句生成一个 4 字节的随机整数:
SELECT FLOOR(RAND() * POWER(2, 32)) AS server_id;
  1. 手动指定:手动指定一个唯一的 server_id 值。确保每个 MySQL 实例都使用不同的值,范围为 1 到 2^32-1。
  2. 使用 IP 地址:将 MySQL 实例的 IP 地址转换为整数,并用作 server_id 值。这样可以确保每个实例都有不同的 server_id,但需要注意当 IP 地址发生变化时,可能需要更新相应的 server_id

无论您选择哪种方法,都要确保每个 MySQL 实例的 server_id 值是唯一的,以避免冲突和数据同步问题。

在配置 Flink CDC 的 MySQL CDC 连接参数时,将所选的 server_id 值传递给 debezium.snapshot.server-id 参数即可,例如:

database.server.name: my-server
debezium.snapshot.server-id: 12345678


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/574299

相关实践学习
基于Hologres+Flink搭建GitHub实时数据大屏
通过使用Flink、Hologres构建实时数仓,并通过Hologres对接BI分析工具(以DataV为例),实现海量数据实时分析.
实时计算 Flink 实战课程
如何使用实时计算 Flink 搞定数据处理难题?实时计算 Flink 极客训练营产品、技术专家齐上阵,从开源 Flink功能介绍到实时计算 Flink 优势详解,现场实操,5天即可上手! 欢迎开通实时计算 Flink 版: https://cn.aliyun.com/product/bigdata/sc Flink Forward Asia 介绍: Flink Forward 是由 Apache 官方授权,Apache Flink Community China 支持的会议,通过参会不仅可以了解到 Flink 社区的最新动态和发展计划,还可以了解到国内外一线大厂围绕 Flink 生态的生产实践经验,是 Flink 开发者和使用者不可错过的盛会。 去年经过品牌升级后的 Flink Forward Asia 吸引了超过2000人线下参与,一举成为国内最大的 Apache 顶级项目会议。结合2020年的特殊情况,Flink Forward Asia 2020 将在12月26日以线上峰会的形式与大家见面。
相关文章
|
6月前
|
SQL 关系型数据库 Apache
从 Flink 到 Doris 的实时数据写入实践 —— 基于 Flink CDC 构建更实时高效的数据集成链路
本文将深入解析 Flink-Doris-Connector 三大典型场景中的设计与实现,并结合 Flink CDC 详细介绍了整库同步的解决方案,助力构建更加高效、稳定的实时数据处理体系。
2657 0
从 Flink 到 Doris 的实时数据写入实践 —— 基于 Flink CDC 构建更实时高效的数据集成链路
|
9月前
|
数据采集 SQL canal
Amoro + Flink CDC 数据融合入湖新体验
本文总结了货拉拉高级大数据开发工程师陈政羽在Flink Forward Asia 2024上的分享,聚焦Flink CDC在货拉拉的应用与优化。内容涵盖CDC应用现状、数据入湖新体验、入湖优化及未来规划。文中详细分析了CDC在多业务场景中的实践,包括数据采集平台化、稳定性建设,以及面临的文件碎片化、Schema演进等挑战。同时介绍了基于Apache Amoro的湖仓融合架构,通过自优化服务解决小文件问题,提升数据新鲜度与读写平衡。未来将深化Paimon与Amoro的结合,打造更高效的入湖生态与自动化优化方案。
527 1
Amoro + Flink CDC 数据融合入湖新体验
|
8月前
|
消息中间件 SQL 关系型数据库
Flink CDC + Kafka 加速业务实时化
Flink CDC 是一种支持流批一体的分布式数据集成工具,通过 YAML 配置实现数据传输过程中的路由与转换操作。它已从单一数据源的 CDC 数据流发展为完整的数据同步解决方案,支持 MySQL、Kafka 等多种数据源和目标端(如 Delta Lake、Iceberg)。其核心功能包括多样化数据输入链路、Schema Evolution、Transform 和 Routing 模块,以及丰富的监控指标。相比传统 SQL 和 DataStream 作业,Flink CDC 提供更灵活的 Schema 变更控制和原始 binlog 同步能力。
|
5月前
|
缓存 关系型数据库 BI
使用MYSQL Report分析数据库性能(下)
使用MYSQL Report分析数据库性能
443 158
|
5月前
|
关系型数据库 MySQL 数据库
自建数据库如何迁移至RDS MySQL实例
数据库迁移是一项复杂且耗时的工程,需考虑数据安全、完整性及业务中断影响。使用阿里云数据传输服务DTS,可快速、平滑完成迁移任务,将应用停机时间降至分钟级。您还可通过全量备份自建数据库并恢复至RDS MySQL实例,实现间接迁移上云。
|
5月前
|
关系型数据库 MySQL 数据库
阿里云数据库RDS费用价格:MySQL、SQL Server、PostgreSQL和MariaDB引擎收费标准
阿里云RDS数据库支持MySQL、SQL Server、PostgreSQL、MariaDB,多种引擎优惠上线!MySQL倚天版88元/年,SQL Server 2核4G仅299元/年,PostgreSQL 227元/年起。高可用、可弹性伸缩,安全稳定。详情见官网活动页。
1038 152
|
5月前
|
关系型数据库 MySQL 数据库
阿里云数据库RDS支持MySQL、SQL Server、PostgreSQL和MariaDB引擎
阿里云数据库RDS支持MySQL、SQL Server、PostgreSQL和MariaDB引擎,提供高性价比、稳定安全的云数据库服务,适用于多种行业与业务场景。
814 156
|
5月前
|
缓存 监控 关系型数据库
使用MYSQL Report分析数据库性能(中)
使用MYSQL Report分析数据库性能
421 156
|
5月前
|
缓存 监控 关系型数据库
使用MYSQL Report分析数据库性能(上)
最终建议:当前系统是完美的读密集型负载模型,优化重点应放在减少行读取量和提高数据定位效率。通过索引优化、分区策略和内存缓存,预期可降低30%的CPU负载,同时保持100%的缓冲池命中率。建议每百万次查询后刷新统计信息以持续优化
524 161
|
6月前
|
存储 运维 关系型数据库
从MySQL到云数据库,数据库迁移真的有必要吗?
本文探讨了企业在业务增长背景下,是否应从 MySQL 迁移至云数据库的决策问题。分析了 MySQL 的优势与瓶颈,对比了云数据库在存储计算分离、自动化运维、多负载支持等方面的优势,并提出判断迁移必要性的五个关键问题及实施路径,帮助企业理性决策并落地迁移方案。

相关产品

  • 实时计算 Flink版