[数据结构]——顺序表和链表

简介: [数据结构]——顺序表和链表(下):https://developer.aliyun.com/article/1515507

💗1.线性表💗:只能从头开始连续存储


线性表(linear list)是n个具有相同特性的数据元素的有限序列。 线性表是一种在实际中广泛使用的数据结构,常见的线性表:顺序表、链表、栈、队列、字符串...

线性表在逻辑上是线性结构,也就说是连续的一条直线。但是在物理结构上并不一定是连续的,线性表在物理上存储时,通常以数组和链式结构的形式存储。

image.png


💗2.顺序表💗


💙1.概念及结构❤️

顺序表是用一段物理地址连续的存储单元依次存储数据元素的线性结构,一般情况下采用数组存储。在数组上完成数据的增删查改。

顺序表一般可以分为:

1. 静态顺序表: 使用定长数组存储元素。(不是很实用,了解就行)

image.png

2. 动态顺序表:使用动态开辟的数组存储。

image.png

❤️ 2. 接口实现💙

静态顺序表只适用于确定知道需要存多少数据的场景。静态顺序表的定长数组导致N定大了,空间开多了浪费,开少了不够用。所以现实中基本都是使用动态顺序表,根据需要动态的分配空间大小,所以下面我们实现动态顺序表。


typedef int SLDataType;
// 顺序表的动态存储
typedef struct SeqList
{
 SLDataType* array;  // 指向动态开辟的数组
 size_t size ;    // 有效数据个数
 size_t capicity ;  // 容量空间的大小
}SeqList;
 
void SLInit(SL* psl);
void SLDestroy(SL* psl);
 
void SLPrint(SL* psl);
void SLCheckCapacity(SL* psl);
// 头尾插入删除
void SLPushBack(SL* psl, SLDataType x);
void SLPushFront(SL* psl, SLDataType x);
void SLPopBack(SL* psl);
void SLPopFront(SL* psl);
// 任意下标位置的插入删除
void SLInsert(SL* psl, int pos, SLDataType x);
void SLErase(SL* psl, int pos);
 
void SLInit(SL* psl)//顺序表初始化
{
  assert(psl);//断言,传入的指针不能为空,报错:显示错误行号,规避错误
 
  psl->a = NULL;
  psl->size = 0;
  psl->capacity = 0;
}
 
void SLDestroy(SL* psl)//销毁
{
  assert(psl);
 
  if (psl->a != NULL)
  {
    free(psl->a);
    //free崩溃的两种可能性:
    //1.传入的指针释放的位置不对
    //2.空间访问有越界
    psl->a = NULL;
    psl->size = 0;
    psl->capacity = 0;
  }
}
 
void SLPrint(SL* psl)//打印
{
  assert(psl);
 
  for (int i = 0; i < psl->size; i++)
  {
    printf("%d ", psl->a[i]);
  }
  printf("\n");
}
 
void SLCheckCapacity(SL* psl)//检查空间是否足够,不够就扩容
{
  assert(psl);
 
  if (psl->size == psl->capacity)
  {
    int newCapacity = psl->capacity == 0 ? 4 : psl->capacity * 2;//扩容
    SLDataType* tmp = (SLDataType*)realloc(psl->a, sizeof(SLDataType) * newCapacity);//sizeof(SLDataType):整型4个字节
    //使用tmp是为了防止因为扩容失败使得原有空间被覆盖
    if (tmp == NULL)
    {
      perror("realloc fail");//若开辟空间失败就打印错误(内存不足或者申请空间过大)
      return;
    }
 
    psl->a = tmp;
    psl->capacity = newCapacity;
  }
}
 
void SLPushBack(SL* psl, SLDataType x)//尾插
{
  assert(psl);
 
  SLCheckCapacity(psl);
 
  psl->a[psl->size] = x;
  psl->size++;
}
 
void SLPushFront(SL* psl, SLDataType x)//头插
{
  assert(psl);
 
  SLCheckCapacity(psl);
 
  // 挪动数据
  int end = psl->size - 1;
  while (end >= 0)
  {
    psl->a[end + 1] = psl->a[end];
    --end;
  }
 
  psl->a[0] = x;
  psl->size++;
}
 
void SLPopBack(SL* psl)//尾删
{
  assert(psl);
 
  // 空
  // 温柔的检查
  /*if (psl->size == 0)
  {
    return;
  }*/
 
  // 暴力检查
  assert(psl->size > 0);//防止因为操作,顺序表为空了还在删
 
  //psl->a[psl->size - 1] = -1;
  psl->size--;
}
 
void SLPopFront(SL* psl)//头删
{
  assert(psl);
 
  // 暴力检查
  assert(psl->size > 0);
 
  int begin = 1;
  while (begin < psl->size)
  {
    psl->a[begin - 1] = psl->a[begin];
    ++begin;
  }
 
  psl->size--;
}
 
// 注意pos是下标
// size是数据个数,看做下标的话,他是最后一个数据的下一个位置
void SLInsert(SL* psl, int pos, SLDataType x)//任意位置的插入
{
  assert(psl);
  assert(pos >= 0 && pos <= psl->size);
 
  SLCheckCapacity(psl);
 
  // 挪动数据
  int end = psl->size - 1;
  while (end >= pos)
  {
    psl->a[end + 1] = psl->a[end];
    --end;
  }
 
  psl->a[pos] = x;
  psl->size++;
}
 
void SLErase(SL* psl, int pos)//任意位置的删除
{
  assert(psl);
  assert(pos >= 0 && pos < psl->size);
 
  // 挪动覆盖
  int begin = pos + 1;
  while (begin < psl->size)
  {
    psl->a[begin - 1] = psl->a[begin];
    ++begin;
  }
 
  psl->size--;
}

3.顺序表的问题


1、尾部插入效率还不错,头部或者中间插入删除,需要挪动数据,效率低下

2、满了以后只能扩容。扩容是有一定的消耗的;扩容一般是存在一定的空间浪费(假设空间是100满了,扩容到200,只需要插入120个数据,有80个就浪费了)

一次扩得越多,可能浪费越多

一次扩的少了,那么可能会频繁扩容


💗3.链表💗


❤️1.链表的概念及结构💙


概念:链表是一种物理存储结构上非连续、非顺序的存储结构,数据元素的逻辑顺序是通过链表中的指针链接次序实现的 。

image.png

image.png

现实中 数据结构中

image.png

❤️2. 链表的分类💙

实际中链表的结构非常多样,以下情况组合起来就有8种链表结构:


💕1. 单向或者双向💕

image.png


💕2. 带头或者不带头💕


image.png

💕3. 循环或者非循环💕

image.png


💕4.常用还是两种结构💕

image.png


💞 1. 无头单向非循环链表:结构简单,一般不会单独用来存数据。实际中更多是作为其他数据结构的子结构,如哈希桶、图的邻接表等等。另外这种结构在笔试面试中出现很多。

💕2. 带头双向循环链表:结构最复杂,一般用在单独存储数据。实际中使用的链表数据结构,都是带头双向循环链表。另外这个结构虽然结构复杂,但是使用代码实现以后会发现结构会带来很多优势,实现反而简单了,后面我们代码实现了就知道了。


❤️3. 链表的实现💙

// 1、无头+单向+非循环链表增删查改实现
typedef int SLTDateType;
typedef struct SListNode
{
SLTDateType data;
struct SListNode* next;
}SListNode;
// 动态申请一个结点
SListNode* BuySListNode(SLTDateType x);
// 单链表打印
void SListPrint(SListNode* plist);
// 单链表尾插
void SListPushBack(SListNode** pplist, SLTDateType x);
// 单链表的头插
void SListPushFront(SListNode** pplist, SLTDateType x);
// 单链表的尾删
void SListPopBack(SListNode** pplist);
// 单链表头删
void SListPopFront(SListNode** pplist);
// 单链表查找
SListNode* SListFind(SListNode* plist, SLTDateType x);
// 单链表在pos位置之后插入x
// 分析思考为什么不在pos位置之前插入?
void SListInsertAfter(SListNode* pos, SLTDateType x);
// 单链表删除pos位置之后的值
// 分析思考为什么不删除pos位置?
void SListEraseAfter(SListNode* pos);


#include"slist.h"
// 动态申请一个节点
SListNode* BuySListNode(SLTDateType x)
{
    SListNode* newnode = (SListNode*)malloc(sizeof(SListNode));
    if (newnode == NULL)
    {
        printf("内存分配失败\n");
        exit(-1);
    }
    newnode->data = x;
    newnode->next = NULL;
    return newnode;
}
// 单链表打印
void SListPrint(SListNode* plist)
{
    assert(plist);
    SListNode* cur = plist;
    while (cur != NULL)
    {
        printf("%d->", cur->data);
        cur = cur->next;
    }
    printf("NULL   \n");
}
// 单链表尾插
void SListPushBack(SListNode** pplist, SLTDateType x)
{
    SListNode* newnode = BuySListNode(x);
    if (*pplist == NULL)
    {
        *pplist = newnode;
    }
    else
    {
        SListNode* current = *pplist;
        while (current->next != NULL)
        {
            current = current->next;
        }
        current->next = newnode;
    }
 
}
// 单链表的头插
void SListPushFront(SListNode** pplist, SLTDateType x)
{
    SListNode* newnode = BuySListNode(x);
    newnode->next = *pplist;
    *pplist = newnode;
}
// 单链表的尾删
void SListPopBack(SListNode** pplist)
{
    assert(*pplist);
    if ((*pplist)->next == NULL)//一个
    {
        free(*pplist);
        *pplist = NULL;
    }
    else//多个
    {
        SListNode* cur = NULL;
        SListNode* cut = *pplist;
        while (cut->next != NULL)
        {
            cur = cut;
            cut = cut->next;
        }
        free(cut);
        cut = NULL;
        cur->next = NULL;
    }
}
// 单链表头删
void SListPopFront(SListNode** pplist)
{
    assert(*pplist);
    SListNode* temp = (*pplist)->next;
    free(*pplist);
    *pplist = temp;
}
// 单链表查找
SListNode* SListFind(SListNode* plist, SLTDateType x)
{
    SListNode* cur = plist;
    while (cur)
    {
        if (cur->data == x)
        {
            return cur;
        }
        else
        {
            cur = cur->next;
        }
    }
    return NULL;
}
// 单链表在pos位置之后插入x
// 分析思考为什么不在pos位置之前插入?
//在单链表中,每个节点只能指向下一个节点,无法直接访问前一个节点。
void SListInsertAfter(SListNode* pos, SLTDateType x)//在pos位置之后插入x
{
    assert(pos);
    SListNode* newnode = BuySListNode(x);
    newnode->next = pos->next;
    pos->next = newnode;
}
// 单链表删除pos位置之后的值
// 分析思考为什么不删除pos位置?
//在单链表中,删除一个节点需要找到要删除节点的前一个节点,
//然后将前一个节点的next指针指向要删除节点的下一个节点,跳过要删除节点。
//而要找到要删除节点的前一个节点,需要遍历单链表,时间复杂度为O(n),
//其中n是链表的长度。 如果要删除pos位置的节点,就需要先找到pos位置的前一个节点,
//然后将前一个节点的next指针指向pos位置的节点的下一个节点,即删除pos位置的节点。
//这个操作同样需要遍历单链表,时间复杂度为O(n)。 
//而如果要删除pos位置之后的节点,只需要将pos位置的节点的next指针指向pos位置的下下个节点,
//跳过pos位置之后的节点。这个操作只需要访问pos位置的节点和pos位置的下一个节点,时间复杂度为O(1)。
//因此,为了减少时间复杂度,在单链表中通常选择删除pos位置之后的节点,而不是删除pos位置的节点。
///这样可以在常数时间内完成删除操作。
void SListEraseAfter(SListNode* pos)//删除pos位置之后的值
{
    assert(pos);
    assert(pos->next);
    SListNode* temp = pos->next;
    pos->next = pos->next->next;
    free(temp);
    temp = NULL;
}
 
// 在pos的前面插入
void SLTInsert(SListNode** pphead, SListNode* pos, SLTDateType x)
{
    assert(pos);
    assert(*pphead);
    assert(pphead);
    if (*pphead == pos)
    {
        SListPushFront(pphead,x);
    }
    else
    {
        SListNode* temp = *pphead;
        while (temp->next != pos)
        {
            temp = temp->next;
        }
        SListNode* newnode = BuySListNode(x);
        temp->next = newnode;
        newnode->next = pos;
    }
}
// 删除pos位置
void SLTErase(SListNode** pphead, SListNode* pos)
{
    assert(pos);
    assert(*pphead);
    assert(pphead);
    if (*pphead == pos)
    {
        SListPopFront(&pphead);
    }
    else
    {
        SListNode* temp = *pphead;
        while (temp->next != pos)
        {
            temp = temp->next;
        }
        temp->next = pos->next;
        free(pos);
        pos = NULL;
    }
}
 
void SLTDestroy(SListNode** pphead)//清空
{
    assert(pphead);
    SListNode* current = *pphead;
    while (current)
    {
        SListNode* next = current->next;
        free(current);
        current = next;
    }
    *pphead = NULL;
}

❤️4.双向链表的实现💙

// 2、带头+双向+循环链表增删查改实现
typedef int LTDataType;
typedef struct ListNode
{
LTDataType _data;
struct ListNode* next;
struct ListNode* prev;
}ListNode;
// 创建返回链表的头结点.
ListNode* ListCreate();
// 双向链表销毁
void ListDestory(ListNode* plist);
// 双向链表打印
void ListPrint(ListNode* plist);
// 双向链表尾插
void ListPushBack(ListNode* plist, LTDataType x);
// 双向链表尾删
void ListPopBack(ListNode* plist);
// 双向链表头插
void ListPushFront(ListNode* plist, LTDataType x);
// 双向链表头删
void ListPopFront(ListNode* plist);
// 双向链表查找
ListNode* ListFind(ListNode* plist, LTDataType x);
// 双向链表在pos的前面进行插入
void ListInsert(ListNode* pos, LTDataType x);
// 双向链表删除pos位置的结点
void ListErase(ListNode* pos);
#include"List.h"
// 创建返回链表新的结点.
ListNode* ListCreate(LTDataType x)
{
  ListNode* newnode = (ListNode*)malloc(sizeof(ListNode));
  if (newnode == NULL)
  {
    perror("malloc fail");
    exit(-1);
  }
  newnode->data = x;
  newnode ->next = NULL;
  newnode->prev = NULL;
  return newnode;
}
//创建双向链表头结点
ListNode* Headnode()
{
  ListNode* phead = ListCreate(-1);
  phead->next = phead;
  phead->prev = phead;
  return phead;
}
// 双向链表销毁
void ListDestory(ListNode* pHead);
// 双向链表打印
void ListPrint(ListNode* pHead)
{
  assert(pHead);
  ListNode* cur = pHead->next;
  while (cur != pHead)
  {
    printf("%d <-> ", cur->data);
    cur = cur->next;
  }
  printf("\n");
}
// 双向链表尾插
void ListPushBack(ListNode* pHead, LTDataType x)
{
  assert(pHead);
  ListNode* tail = pHead->prev;
  ListNode* newnode = ListCreate(x);
  tail->next = newnode;
  newnode->prev = tail;
  newnode->next = pHead;
  pHead->prev = newnode;
}
// 双向链表尾删
void ListPopBack(ListNode* pHead)
{
  assert(pHead);
  assert(pHead->next != pHead);
  ListNode* cur = pHead->prev;
  ListNode* tail = cur->prev;
  tail->next = pHead;
  pHead->prev = tail;
  free(cur);
}
// 双向链表头插
void ListPushFront(ListNode* pHead, LTDataType x)
{
  assert(pHead);
  ListNode* newnode = ListCreate(x);
  ListNode* tail = pHead->next;
  tail->prev = newnode;
  pHead->next = newnode;
  newnode->prev = pHead;
  newnode->next = tail;
}
// 双向链表头删
void ListPopFront(ListNode* pHead)
{
  assert(pHead);
  ListNode* tail = pHead->next;
  ListNode* tailnext = tail->next;
  free(tail);
  pHead->next = tailnext;
  tailnext->prev = pHead;
}
// 双向链表查找
ListNode* ListFind(ListNode* pHead, LTDataType x)
{
  assert(pHead);
  ListNode*cur= pHead->next;
  while (cur!=pHead)
  {
    if (cur->data == x)
    {
      return cur;
    }
    cur = cur->next;
  }
  return NULL;
 
}
// 双向链表在pos的前面进行插入
void ListInsert(ListNode* pos, LTDataType x)
{
  assert(pos);
  ListNode* newnode = ListCreate(x);
  ListNode* tail = pos->prev;
  tail->next = newnode;
  newnode->prev = tail;
  newnode->next = pos;
  pos->prev = newnode;
}
// 双向链表删除pos位置的节点
void ListErase(ListNode* pos)
{
  assert(pos);
  ListNode* posnext = pos->next;
  ListNode* posprev = pos->prev;
  free(pos);
  posprev->next = posnext;
  posnext->prev = posprev;
}

💗4.顺序表和链表的区别和联系


不同点  顺序表  链表
存储空间上  物理上一定连续 逻辑上连续,但物理上不一定
连续
随机访问  支持O(1) 不支持:O(N)
任意位置插入或者删除
元素
可能需要搬移元素,效率低
O(N)
只需修改指针指向
插入 动态顺序表,空间不够时需要扩容 没有容量的概念
应用场景  元素高效存储+频繁访问 任意位置插入和删除频繁
缓存利用率  高 


备注:缓存利用率参考存储体系结构 以及 局部原理性。

相关文章
|
18天前
|
存储
顺序表和链表(2)
【10月更文挑战第23天】
顺序表和链表(2)
|
19天前
|
存储 C语言
【数据结构】手把手教你单链表(c语言)(附源码)
本文介绍了单链表的基本概念、结构定义及其实现方法。单链表是一种内存地址不连续但逻辑顺序连续的数据结构,每个节点包含数据域和指针域。文章详细讲解了单链表的常见操作,如头插、尾插、头删、尾删、查找、指定位置插入和删除等,并提供了完整的C语言代码示例。通过学习单链表,可以更好地理解数据结构的底层逻辑,提高编程能力。
45 4
|
19天前
|
存储 算法 数据管理
顺序表和链表(1)
【10月更文挑战第22天】
|
20天前
|
存储 算法 安全
2024重生之回溯数据结构与算法系列学习之顺序表【无论是王道考研人还真爱粉都能包会的;不然别给我家鸽鸽丢脸好嘛?】
顺序表的定义和基本操作之插入;删除;按值查找;按位查找等具体详解步骤以及举例说明
|
20天前
|
存储 C语言
【数据结构】顺序表(c语言实现)(附源码)
本文介绍了线性表和顺序表的基本概念及其实现。线性表是一种有限序列,常见的线性表有顺序表、链表、栈、队列等。顺序表是一种基于连续内存地址存储数据的数据结构,其底层逻辑是数组。文章详细讲解了静态顺序表和动态顺序表的区别,并重点介绍了动态顺序表的实现,包括初始化、销毁、打印、增删查改等操作。最后,文章总结了顺序表的时间复杂度和局限性,并预告了后续关于链表的内容。
51 3
|
20天前
|
算法 安全 搜索推荐
2024重生之回溯数据结构与算法系列学习之单双链表精题详解(9)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
数据结构王道第2.3章之IKUN和I原达人之数据结构与算法系列学习x单双链表精题详解、数据结构、C++、排序算法、java、动态规划你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
|
20天前
|
存储 Web App开发 算法
2024重生之回溯数据结构与算法系列学习之单双链表【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
数据结构之单双链表按位、值查找;[前后]插入;删除指定节点;求表长、静态链表等代码及具体思路详解步骤;举例说明、注意点及常见报错问题所对应的解决方法
|
20天前
|
算法 安全 NoSQL
2024重生之回溯数据结构与算法系列学习之顺序表习题精讲【无论是王道考研人还真爱粉都能包会的;不然别给我家鸽鸽丢脸好嘛?】
顺序表的定义和基本操作之插入;删除;按值查找;按位查找习题精讲等具体详解步骤以及举例说明
|
19天前
|
C语言
【数据结构】双向带头循环链表(c语言)(附源码)
本文介绍了双向带头循环链表的概念和实现。双向带头循环链表具有三个关键点:双向、带头和循环。与单链表相比,它的头插、尾插、头删、尾删等操作的时间复杂度均为O(1),提高了运行效率。文章详细讲解了链表的结构定义、方法声明和实现,包括创建新节点、初始化、打印、判断是否为空、插入和删除节点等操作。最后提供了完整的代码示例。
38 0
|
1月前
|
存储
[数据结构] -- 双向循环链表
[数据结构] -- 双向循环链表
22 0