从C语言到C++⑦(第二章_类和对象_下篇)初始化列表+explicit+static成员+友元+内部类+匿名对象(下)

简介: 从C语言到C++⑦(第二章_类和对象_下篇)初始化列表+explicit+static成员+友元+内部类+匿名对象

从C语言到C++⑦(第二章_类和对象_下篇)初始化列表+explicit+static成员+友元+内部类+匿名对象(中):https://developer.aliyun.com/article/1513653


4.3 友元函数

友元函数可以直接访问类的私有成员,它是定义在类外部的普通函数。

它不属于任何类,但需要在类的内部进行声明,声明时要加 friend 关键字。

我们现在就可以去解决刚才的问题了:

#include <iostream>
using namespace std;
 
class Date 
{
  friend void operator<<(ostream& out, const Date& d);// 友元的声明
 
public:
  Date(int year = 1, int month = 1, int day = 1) 
  {
    _year = year;
    _month = month;
    _day = day;
  }
  void Print() const 
  {
    cout << _year << "年" << _month << "月" << _day << "日" << endl;
  }
 
  void operator<<(ostream& out)
  {
    out << _year << "年" << _month << "月" << _day << "日" << endl;
  }
private:
  int _year;
  int _month;
  int _day;
};
 
void operator<<(ostream& out, const Date& d)
{
  out << d._year << "年" << d._month << "月" << d._day << "日" << endl;
}
 
int main()
{
  Date d1(2023, 5, 7);
  //d1.Print();
  cout << d1;
  //d1 << cout;
 
  return 0;
}

如果我们想连续地输出呢?我想在这又输出 d1 又输出 d2。

cout << d1 << d2;

现在实现的不支持。这和连续赋值很像,只是连续赋值是从右往左,这里是从左往右。

连续插入 d1 和 d2 实际上就是两次函数的调用,这里先执行的是 cout << d1,

因为调用函数后返回值是 void,void 会做这里的左操作数,

所以当然不支持连续输出了,我们可以改一下,

我们把返回值改为 ostream 就行,把 out 返回回去。

解决了流插入,我们再来顺便实现一下流提取。

这样我们上一篇的大练习:日期类,基本上就完整了。


流提取因为要把输入的东西写到对象里去,会改变,所以这里当然不能加 const 。

istream& operator>>(istream& in, Date& d) 
{
  in >> d._year >> d._month >> d._day;
  return in;
}

4.3.1 完整流插入流提取重载:

#include <iostream>
using namespace std;
 
class Date 
{
  friend ostream& operator<<(ostream& out, const Date& d);// 友元的声明
  friend istream& operator>>(istream& in, Date& d);
 
public:
  Date(int year = 1, int month = 1, int day = 1) 
  {
    _year = year;
    _month = month;
    _day = day;
  }
  void Print() const 
  {
    cout << _year << "年" << _month << "月" << _day << "日" << endl;
  }
 
  void operator<<(ostream& out)
  {
    out << _year << "年" << _month << "月" << _day << "日" << endl;
  }
private:
  int _year;
  int _month;
  int _day;
};
 
ostream& operator<<(ostream& out, const Date& d)
{
  out << d._year << "年" << d._month << "月" << d._day << "日" << endl;
  return out;
}
istream& operator>>(istream& in, Date& d) 
{
  in >> d._year >> d._month >> d._day;
  return in;
}
 
int main()
{
  Date d1(2023, 5, 7);
  Date d2(2023, 5, 8);
  //d1.Print();
  cout << d1 << d2;
  //d1 << cout;
 
  Date d3;
  Date d4;
  cin >> d3 >> d4;
  cout << d3 << d4 << endl;
 
  return 0;
}

4.3.2 友元函数注意事项:

① 友元函数可以访问类的 private 和 protected 成员,但并不代表能访问类的成员函数。

② 友元函数不能用 const 修饰。

③ 友元函数可以在类定义的任何地方申明,可以不受类访问限定符的控制。

④ 一个函数可以是多个类的友元函数。

⑤ 友元函数的调用和普通函数的调用原理相同。

4.4 友元类

友元类的所有成员函数都可以是另一个类的友元函数,

都可以访问另一个类中的非公有成员。

friend class 类名;

① 友元关系是单向的,不具有交换性。

② 友元关系不具有传递性(朋友的朋友不一定是朋友)。

   如果 C 是 B 的友元,B 是 A 的友元,则不能说明 C 是 A 的友元。

③ 友元关系不能继承,在后面学习继承的时候再给大家详细介绍。

定义一个友元类:

#include<iostream>
using namespace std;
 
class Date;   // 前置声明
 
class Time
{
  friend class Date; // 声明日期类为时间类的友元类,则在日期类中就直接访问Time类中的私有成员变量
public:
  Time(int hour = 0, int minute = 0, int second = 0)
    : _hour(hour)
    , _minute(minute)
    , _second(second)
  {}
 
private:
  int _hour;
  int _minute;
  int _second;
};
 
class Date
{
public:
  Date(int year = 1, int month = 1, int day = 1)
    : _year(year)
    , _month(month)
    , _day(day)
  {}
 
  void GetTime()
  {
    // 直接访问Time类私有的成员变量
    cout << _t._hour << ":" << _t._minute << ":" << _t._second << endl;
  }
 
private:
  int _year;
  int _month;
  int _day;
  Time _t;
};
 
int main()
{
  Date d;
  d.GetTime();
 
  return 0;
}

这里 Date 是 Time 的友元,我们在日期类里就可以访问时间类的私有成员了。

但是时间类里不能访问日期类,因为这是 "单向好友" ,

如果想在时间类里访问日期类,我们可以在日期类里声明:

class Date 
{
    friend class Time;
    // ...
}

这样,它们之间就是 "双向好友" 了 -> 互相成为对方的友元。

5. 内部类(了解)

C++中不常用内部类,Java中用得多一点,所以我们了解一下就行。

5.1 内部类的概念

如果在 A 类中定义 B 类,我们称 B 是 A 的内部类。

class A 
{
  class B {
    ;
  };
};

内部类是一个独立的类, 它不属于外部类,更不能通过外部类的对象去访问内部类的成员。

外部类对内部类没有任何优越的访问权限。

注意: 内部类就是外部类的友元类 ,(我把你放在我心里,你就是我的友元)

参见友元类的定义,内部类可以通过外部类的对象参数来访问外部类中的所有成员。

但是外部类不是内部类的友元。

#include<iostream>
using namespace std;
 
class A
{
public:
  class B // B天生就是A的友元
  {
  public:
    void fuc(const A& a)
    {
      cout << g << endl;
      cout << a.r << endl;
    }
  };
 
private:
  static int g;
  int r = 19;
};
 
int A::g = 1;
 
int main()
{
  A a;
  A::B b;
  b.fuc(a);
 
  return 0;
}

5.2 内部类的特性

1. 内部类可以定义在外部类的public、protected、private都是可以的。

2. 注意内部类可以直接访问外部类中的static成员,不需要外部类的对象/类名。

   (同上代码,加上外部类的对象/类名也行)

3. sizeof(外部类)=外部类,和内部类没有任何关系。

#include<iostream>
using namespace std;
 
class A 
{
private:
  static int _s_a1;
  int _a2;
 
public:
  class B 
  {
  private:
    int _b1;
  };
};
 
int A::_s_a1 = 1;
 
int main()
{
  cout << "A的大小为: " << sizeof(A) << endl;
 
  return 0;
}

sizeof(外部类)=外部类,和内部类没有任何关系。

内部类 B 天生就是外部类 A 的友元,也就是 B 中可以访问 A 的私有(或保护),

A 不能访问 B 的私有(或保护)。

所以,A 类型的对象里没有 B,跟 B 没什么关系,计算 sizeof 当然也不会带上B。

加上静态成员属于整个类,是放在静态区的,所以这里只计算了int _a2的大小。

6. 匿名对象

匿名对象是指创建对象时,只有创建对象的语句,却没有把对象地址值赋值给某个变量。


产生匿名对象的三种情况:


① 以值的方式给函数传参;

 A(); —> 生成了一个匿名对象,执行完Cat( )代码后,此匿名对象就此消失。这就是匿名对象的生命周期。

  A aa = A(); —>首先生成了一个匿名对象,然后将此匿名对象变为了aa对象,其生命周期就变成了aa对象的生命周期。


② 类型转换;


③ 函数需要返回一个对象时;return temp;

#include<iostream>
using namespace std;
 
class A
{
public:
  A(int a = 0)
    :_a(a)
  {
    cout << "A(int a)" << endl;
  }
 
  ~A()
  {
    cout << "~A()" << endl;
  }
 
private:
  int _a;
};
 
int main()
{
  A aa1;
  //A aa1(); 不能这么定义对象,因为编译器无法识别下面是一个函数声明,还是对象定义
  // 但是我们可以这么定义匿名对象,匿名对象的特点不用取名字,
  // 但是他的生命周期只有这一行,我们可以看到下一行他就会自动调用析构函数
  A();
  A aa2;
 
  return 0;
}

7. 拷贝对象时的一些编译器优化

在传参和传返回值的过程中,新一点的主流的编译器都会做一些优化,减少对象的拷贝,

这个在一些场景下还是非常有用的。

#include<iostream>
using namespace std;
 
class A
{
public:
  A(int a = 0)
    :_a(a)
  {
    cout << "A(int a)" << endl;
  }
  A(const A& aa)
    :_a(aa._a)
  {
    cout << "A(const A& aa)" << endl;
  }
  A& operator=(const A& aa)
  {
    cout << "A& operator=(const A& aa)" << endl;
    if (this != &aa)
    {
      _a = aa._a;
    }
    return *this;
  }
  ~A()
  {
    cout << "~A()" << endl;
  }
private:
  int _a;
};
 
void f1(A aa)
{}
 
A f2()
{
  A aa;
  return aa;
}
 
int main()
{
  // 传值传参
  A aa1;
  f1(aa1);
  cout << endl;
 
  // 传值返回
  f2();
  cout << endl;
 
  // 隐式类型,连续构造+拷贝构造->优化为直接构造
  f1(1);
  cout << endl;
 
  // 一个表达式中,连续构造+拷贝构造->优化为一个构造
  f1(A(2));
  cout << endl;
 
  // 一个表达式中,连续拷贝构造+拷贝构造->优化一个拷贝构造
  A aa2 = f2();
  cout << endl;
 
  // 一个表达式中,连续拷贝构造+赋值重载->无法优化
  aa1 = f2();
  cout << endl;
  return 0;
}

拷贝对象时的一些编译器优化就提醒我们能在一行写的就在一行写,

尽量往编译器的优化方面靠拢。关于匿名对象和这方面的题就放在下一篇了。

本篇完。

目录
相关文章
|
2月前
|
安全 编译器 C语言
C++入门1——从C语言到C++的过渡
C++入门1——从C语言到C++的过渡
72 2
|
25天前
|
算法 编译器 C语言
【C语言】C++ 和 C 的优缺点是什么?
C 和 C++ 是两种强大的编程语言,各有其优缺点。C 语言以其高效性、底层控制和简洁性广泛应用于系统编程和嵌入式系统。C++ 在 C 语言的基础上引入了面向对象编程、模板编程和丰富的标准库,使其适合开发大型、复杂的软件系统。 在选择使用 C 还是 C++ 时,开发者需要根据项目的需求、语言的特性以及团队的技术栈来做出决策。无论是 C 语言还是 C++,了解其优缺点和适用场景能够帮助开发者在实际开发中做出更明智的选择,从而更好地应对挑战,实现项目目标。
49 0
|
2月前
|
C语言 C++
C 语言的关键字 static 和 C++ 的关键字 static 有什么区别
在C语言中,`static`关键字主要用于变量声明,使得该变量的作用域被限制在其被声明的函数内部,且在整个程序运行期间保留其值。而在C++中,除了继承了C的特性外,`static`还可以用于类成员,使该成员被所有类实例共享,同时在类外进行初始化。这使得C++中的`static`具有更广泛的应用场景,不仅限于控制变量的作用域和生存期。
69 10
|
2月前
|
存储 编译器 数据安全/隐私保护
【C++篇】C++类与对象深度解析(四):初始化列表、类型转换与static成员详解2
【C++篇】C++类与对象深度解析(四):初始化列表、类型转换与static成员详解
44 3
|
2月前
|
C语言 C++
实现两个变量值的互换[C语言和C++的区别]
实现两个变量值的互换[C语言和C++的区别]
29 0
|
2月前
|
C++
C++构造函数初始化类对象
C++构造函数初始化类对象
26 0
|
1月前
|
存储 编译器 C语言
【c++丨STL】string类的使用
本文介绍了C++中`string`类的基本概念及其主要接口。`string`类在C++标准库中扮演着重要角色,它提供了比C语言中字符串处理函数更丰富、安全和便捷的功能。文章详细讲解了`string`类的构造函数、赋值运算符、容量管理接口、元素访问及遍历方法、字符串修改操作、字符串运算接口、常量成员和非成员函数等内容。通过实例演示了如何使用这些接口进行字符串的创建、修改、查找和比较等操作,帮助读者更好地理解和掌握`string`类的应用。
51 2
|
1月前
|
存储 编译器 C++
【c++】类和对象(下)(取地址运算符重载、深究构造函数、类型转换、static修饰成员、友元、内部类、匿名对象)
本文介绍了C++中类和对象的高级特性,包括取地址运算符重载、构造函数的初始化列表、类型转换、static修饰成员、友元、内部类及匿名对象等内容。文章详细解释了每个概念的使用方法和注意事项,帮助读者深入了解C++面向对象编程的核心机制。
104 5
|
1月前
|
存储 编译器 C++
【c++】类和对象(中)(构造函数、析构函数、拷贝构造、赋值重载)
本文深入探讨了C++类的默认成员函数,包括构造函数、析构函数、拷贝构造函数和赋值重载。构造函数用于对象的初始化,析构函数用于对象销毁时的资源清理,拷贝构造函数用于对象的拷贝,赋值重载用于已存在对象的赋值。文章详细介绍了每个函数的特点、使用方法及注意事项,并提供了代码示例。这些默认成员函数确保了资源的正确管理和对象状态的维护。
93 4
|
1月前
|
存储 编译器 Linux
【c++】类和对象(上)(类的定义格式、访问限定符、类域、类的实例化、对象的内存大小、this指针)
本文介绍了C++中的类和对象,包括类的概念、定义格式、访问限定符、类域、对象的创建及内存大小、以及this指针。通过示例代码详细解释了类的定义、成员函数和成员变量的作用,以及如何使用访问限定符控制成员的访问权限。此外,还讨论了对象的内存分配规则和this指针的使用场景,帮助读者深入理解面向对象编程的核心概念。
111 4