【数据采集与预处理】数据接入工具Kafka

本文涉及的产品
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
注册配置 MSE Nacos/ZooKeeper,118元/月
云原生网关 MSE Higress,422元/月
简介: 【数据采集与预处理】数据接入工具Kafka

一、Kafka简介

(一)消息队列

消息队列内部实现原理

1、点对点模式(一对一,消费者主动拉取数据,消息收到后消息清除)

       点对点模型通常是一个基于拉取或者轮询的消息传送模型,这种模型从队列中请求信息,而不是将消息推送到客户端。这个模型的特点是发送到队列的消息被一个且只有一个接收者接收处理,即使有多个消息监听者也是如此。

2、发布/订阅模式(一对多,数据生产后,推送给所有订阅者)

       发布订阅模型则是一个基于推送的消息传送模型。发布订阅模型可以有多种不同的订阅者,临时订阅者只在主动监听主题时才接收消息,而持久订阅者则监听主题的所有消息,即使当前订阅者不可用,处于离线状态。

(二)什么是Kafka

       Kafka是由Apache软件基金会开发的一个开源流处理平台,由Scala和Java编写。Kafka是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者在网站中的所有动作流数据。Kafka的目的是通过Hadoop的并行加载机制来统一线上和离线的消息处理,也是为了通过集群来提供实时的消息。

在流式计算中,Kafka 一般用来缓存数据,Storm 通过消费 Kafka 的数据进行计算。

1、Apache Kafka 是一个开源消息系统。是由 Apache 软件基金会开发的一个开源消息系统项目。

2、Kafka 最初是由 LinkedIn 公司开发,并于 2011 年初开源。2012 年 10 月从 Apache Incubator 毕业。该项目的目标是为处理实时数据提供一个统一、高通量、低等待的平台。

3、Kafka 是一个分布式消息队列。Kafka 对消息保存时根据 Topic 进行归类,发送消息者称为 Producer,消息接受者称为 Consumer,此外 kafka 集群有多个 kafka 实例组成,每个实例(server)称为 broker。

4、无论是 kafka 集群,还是 consumer 都依赖于 zookeeper 集群保存一些 meta 信息,来保证系统可用性。

二、Kafka架构

1、Producer :消息生产者,就是向 kafka broker 发消息的客户端;

2、Consumer :消息消费者,向 kafka broker 取消息的客户端;

3、Topic :可以理解为一个队列;

4、Consumer Group (CG):这是kafka用来实现一个topic消息的广播(发给所有的consumer)和单播(发给任意一个 consumer)的手段。一个 topic 可以有多个 CG。topic 的消息会复制(不是真的复制,是概念上的)到所有的 CG,但每个 partion 只会把消息发给该 CG 中的一个 consumer。如果需要实现广播,只要每个 consumer 有一个独立的 CG 就可以了。要实现单播只要所有的 consumer 在同一个 CG。用 CG 还可以将 consumer 进行自由的分组而不需要多次发送消息到不同的 topic;

5、Broker :一台 kafka 服务器就是一个 broker。一个集群由多个 broker 组成。一个 broker可以容纳多个 topic;

6、Partition:为了实现扩展性,一个非常大的 topic 可以分布到多个 broker(即服务器)上,一个 topic 可以分为多个 partition,每个 partition 是一个有序的队列。partition 中的每条消息都会被分配一个有序的 id(offset)。kafka 只保证按一个 partition 中的顺序将消息发给consumer,不保证一个 topic 的整体(多个 partition 间)的顺序;

7、Offset:kafka 的存储文件都是按照 offset.kafka 来命名,用 offset 做名字的好处是方便查找。例如你想找位于 2049 的位置,只要找到 2048.kafka 的文件即可。当然 the first offset 就是 00000000000.kafka。

三、Kafka工作流程分析

(一)Kafka核心组成

(二)写入流程

Producer写入流程:

1)producer 先从 zookeeper 的 "/brokers/.../state"节点找到该 partition 的 leader

2)producer 将消息发送给该 leader

3)leader 将消息写入本地 log

4)followers 从 leader pull 消息,写入本地 log 后向 leader 发送 ACK

5)leader 收到所有 ISR 中的 replication 的 ACK 后,增加 HW(high watermark,最后 commit 的 offset)并向 producer 发送 ACK

(三)Zookeeper 存储结构

注意:producer 不在 zk 中注册,消费者在 zk 中注册。

(四)Kafka 消费过程

消费者组:

       消费者是以 consumer group 消费者组的方式工作,由一个或者多个消费者组成一个组,共同消费一个 topic。每个分区在同一时间只能由 group 中的一个消费者读取,但是多个 group 可以同时消费这个 partition。在图中,有一个由三个消费者组成的 group,有一个消费者读取主题中的两个分区,另外两个分别读取一个分区。某个消费者读取某个分区,也可以叫做某个消费者是某个分区的拥有者。

       在这种情况下,消费者可以通过水平扩展的方式同时读取大量的消息。另外,如果一个消费者失败了,那么其他的 group 成员会自动负载均衡读取之前失败的消费者读取的分区。

四、Kafka准备工作

(一)Kafka安装配置

1、到官网下载jar包,保存至“/usr/local/uploads”目录下。

Apache Kafka

https://kafka.apache.org/downloads

2、解压安装Kafka,并重命名解压后的文件夹。

[root@bigdata uploads]# tar -zxvf kafka_2.11-0.8.2.2.tgz -C /usr/local
[root@bigdata uploads]# cd ..
[root@bigdata local]# mv kafka_2.11-0.8.2.2/ kafka

3、配置Spark环境

[root@bigdata local]# cd ./spark/conf
[root@bigdata conf]# vi spark-env.sh

在文件的第一行接着添加如下内容:

:/usr/local/spark/examples/jars/*:/usr/local/spark/jars/kafka/*:/usr/local/kafka/libs/*

接着,在“/usr/local/spark/jars”目录下新建文件夹kafka,并将“/usr/local/kafka/libs/”目录下的所有jar包都拷贝到“/usr/local/spark/jars/kafka”目录下。

[root@bigdata spark]# cd /usr/local/spark/jars
[root@bigdata jars]# mkdir kafka
[root@bigdata jars]# cd kafka
[root@bigdata kafka]# cp /usr/local/kafka/libs/* .

然后,将“/usr/local/uploads/”下的spark-streaming-kafka-0-8_2.11-2.4.0.jar包也拷贝到“/usr/local/spark/jars/kafka”目录下。

[root@bigdata kafka]# cp /usr/local/uploads/spark-streaming-kafka-0-8_2.11-2.4.0.jar .

spark-streaming-kafka-0-8_2.11-2.4.0.jar的下载地址:

http://mvnrepository.com/artifact/org.apache.spark/spark-streaming-kafka-0-8_2.11/2.4.0

下图是拷贝完成后的“/usr/local/spark/jars/kafka”目录下的所有jar包。

这样,Spark环境就配好了。

(二)启动Kafka

1、启动Zookeeper服务

打开一个终端,输入下面命令启动Zookeeper服务:

[root@bigdata kafka]# cd /usr/local/kafka
[root@bigdata kafka]# ./bin/zookeeper-server-start.sh config/zookeeper.properties

千万不要关闭这个终端窗口,一旦关闭,Zookeeper服务就停止了。

2、启动Kafka服务

打开第二个终端,然后输入下面命令启动Kafka服务:

[root@bigdata zhc]# cd /usr/local/kafka
[root@bigdata kafka]# bin/kafka-server-start.sh config/server.properties

千万不要关闭这个终端窗口,一旦关闭,Kafka服务就停止了

(三)测试Kafka是否正常工作

再打开第三个终端,然后输入下面命令创建一个自定义名称为“wordsendertest”的Topic:

[root@bigdata zhc]# cd /usr/local/kafka
[root@bigdata kafka]# ./bin/kafka-topics.sh  --create  --zookeeper  localhost:2181 --replication-factor  1  --partitions  1  --topic  wordsendertest
#可以用list列出所有创建的Topic,验证是否创建成功
[root@bigdata kafka]# ./bin/kafka-topics.sh  --list  --zookeeper  localhost:2181

replication-factor:每个partition的副本个数

下面用生产者(Producer)来产生一些数据,请在当前终端(记作“数据源终端”)内继续输入下面命令:

[root@bigdata kafka]# ./bin/kafka-console-producer.sh  --broker-list  localhost:9092  --topic  wordsendertest

上面命令执行后,就可以在当前终端内用键盘输入一些英文单词,比如可以输入:

hello hadoop

hello spark

现在可以启动一个消费者,来查看刚才生产者产生的数据。请另外打开第四个终端,输入下面命令:

[root@bigdata zhc]# cd /usr/local/kafka
[root@bigdata kafka]# ./bin/kafka-console-consumer.sh  --zookeeper  localhost:2181  --topic  wordsendertest  --from-beginning

可以看到,屏幕上会显示出如下结果,也就是刚才在另外一个终端里面输入的内容:

五、编写Spark Streaming程序使用Kafka数据源

在“/home/zhc/mycode/”路径下新建文件夹sparkstreaming,再在该文件夹下新建py文件KafkaWordCount.py。

#/home/zhc/mycode/sparkstreaming/KafkaWordCount.py
from __future__ import print_function
import sys
from pyspark import SparkContext
from pyspark.streaming import StreamingContext
from pyspark.streaming.kafka import KafkaUtils
 
if __name__ == "__main__":
    if len(sys.argv) != 3:
        print("Usage: KafkaWordCount.py <zk> <topic>", file=sys.stderr)
        exit(-1)
    sc = SparkContext(appName="PythonStreamingKafkaWordCount")
    ssc = StreamingContext(sc, 1)
    zkQuorum, topic = sys.argv[1:]
    kvs = KafkaUtils.createStream(ssc, zkQuorum, "spark-streaming-consumer", {topic: 1})
    lines = kvs.map(lambda x: x[1])
    counts = lines.flatMap(lambda line: line.split(" ")).map(lambda word: (word, 1)).reduceByKey(lambda a, b: a+b)
    counts.pprint()
    ssc.start()
    ssc.awaitTermination()

新建一个终端(记作“流计算终端”),执行KafkaWordCount.py,命令如下:

[root@bigdata zhc]# cd /home/zhc/mycode
[root@bigdata mycode]# mkdir sparkstreaming
[root@bigdata mycode]# cd sparkstreaming
[root@bigdata sparkstreaming]# vi KafkaWordCount.py
[root@bigdata sparkstreaming]# spark-submit KafkaWordCount.py localhost:2181 wordsendertest

这时再切换到之前已经打开的“数据源终端”,用键盘手动敲入一些英文单词,在流计算终端内就可以看到类似如下的词频统计动态结果。


目录
相关文章
|
2月前
|
消息中间件 存储 运维
为什么说Kafka还不是完美的实时数据通道
【10月更文挑战第19天】Kafka 虽然作为数据通道被广泛应用,但在实时性、数据一致性、性能及管理方面存在局限。数据延迟受消息堆积和分区再平衡影响;数据一致性难以达到恰好一次;性能瓶颈在于网络和磁盘I/O;管理复杂性涉及集群配置与版本升级。
103 1
|
2月前
|
消息中间件 Java Kafka
Flink-04 Flink Java 3分钟上手 FlinkKafkaConsumer消费Kafka数据 进行计算SingleOutputStreamOperatorDataStreamSource
Flink-04 Flink Java 3分钟上手 FlinkKafkaConsumer消费Kafka数据 进行计算SingleOutputStreamOperatorDataStreamSource
55 1
|
3月前
|
数据采集 消息中间件 存储
实时数据处理的终极武器:Databricks与Confluent联手打造数据采集与分析的全新篇章!
【9月更文挑战第3天】本文介绍如何结合Databricks与Confluent实现高效实时数据处理。Databricks基于Apache Spark提供简便的大数据处理方式,Confluent则以Kafka为核心,助力实时数据传输。文章详细阐述了利用Kafka进行数据采集,通过Delta Lake存储并导入数据,最终在Databricks上完成数据分析的全流程,展示了一套完整的实时数据处理方案。
75 3
|
4月前
|
消息中间件 Java Kafka
Kafka不重复消费的终极秘籍!解锁幂等性、偏移量、去重神器,让你的数据流稳如老狗,告别数据混乱时代!
【8月更文挑战第24天】Apache Kafka作为一款领先的分布式流处理平台,凭借其卓越的高吞吐量与低延迟特性,在大数据处理领域中占据重要地位。然而,在利用Kafka进行数据处理时,如何有效避免重复消费成为众多开发者关注的焦点。本文深入探讨了Kafka中可能出现重复消费的原因,并提出了四种实用的解决方案:利用消息偏移量手动控制消费进度;启用幂等性生产者确保消息不被重复发送;在消费者端实施去重机制;以及借助Kafka的事务支持实现精确的一次性处理。通过这些方法,开发者可根据不同的应用场景灵活选择最适合的策略,从而保障数据处理的准确性和一致性。
345 9
|
4月前
|
消息中间件 Kafka 测试技术
【Azure 事件中心】使用Kafka的性能测试工具(kafka-producer-perf-test)测试生产者发送消息到Azure Event Hub的性能
【Azure 事件中心】使用Kafka的性能测试工具(kafka-producer-perf-test)测试生产者发送消息到Azure Event Hub的性能
|
4月前
|
消息中间件 数据采集 关系型数据库
大数据-业务数据采集-FlinkCDC 读取 MySQL 数据存入 Kafka
大数据-业务数据采集-FlinkCDC 读取 MySQL 数据存入 Kafka
63 1
|
4月前
|
消息中间件 负载均衡 Java
"Kafka核心机制揭秘:深入探索Producer的高效数据发布策略与Java实战应用"
【8月更文挑战第10天】Apache Kafka作为顶级分布式流处理平台,其Producer组件是数据高效发布的引擎。Producer遵循高吞吐、低延迟等设计原则,采用分批发送、异步处理及数据压缩等技术提升性能。它支持按消息键值分区,确保数据有序并实现负载均衡;提供多种确认机制保证可靠性;具备失败重试功能确保消息最终送达。Java示例展示了基本配置与消息发送流程,体现了Producer的强大与灵活性。
73 3
|
4月前
|
数据采集 消息中间件 存储
实时数据处理的终极武器:Databricks与Confluent联手打造数据采集与分析的全新篇章!
【8月更文挑战第9天】利用Databricks与Confluent打造实时数据处理方案。Confluent的Kafka负责数据采集,通过主题接收IoT及应用数据;Databricks运用Structured Streaming处理Kafka数据,并以Delta Lake存储,支持ACID事务。这套组合实现了从数据采集、存储到分析的全流程自动化,满足企业对大数据实时处理的需求。
51 3
|
4月前
|
vr&ar 图形学 开发者
步入未来科技前沿:全方位解读Unity在VR/AR开发中的应用技巧,带你轻松打造震撼人心的沉浸式虚拟现实与增强现实体验——附详细示例代码与实战指南
【8月更文挑战第31天】虚拟现实(VR)和增强现实(AR)技术正深刻改变生活,从教育、娱乐到医疗、工业,应用广泛。Unity作为强大的游戏开发引擎,适用于构建高质量的VR/AR应用,支持Oculus Rift、HTC Vive、Microsoft HoloLens、ARKit和ARCore等平台。本文将介绍如何使用Unity创建沉浸式虚拟体验,包括设置项目、添加相机、处理用户输入等,并通过具体示例代码展示实现过程。无论是完全沉浸式的VR体验,还是将数字内容叠加到现实世界的AR应用,Unity均提供了所需的一切工具。
162 0
|
4月前
|
消息中间件 存储 关系型数据库
实时计算 Flink版产品使用问题之如何使用Kafka Connector将数据写入到Kafka
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。