[Github高赞文章]python2愉快地迁移到Python3_code changing from python2 to python3(2)

简介: [Github高赞文章]python2愉快地迁移到Python3_code changing from python2 to python3(2)


# Python 3
_print = print # store the original print function
def print(*args, **kargs):
    pass  # do something useful, e.g. store output to some file
注意:在 Jupyter 中,最好将每个输出记录到一个单独的文件中(跟踪断开连接后发生的情况),这样就可以覆盖 print 了。
@contextlib.contextmanager
def replace_print():
    import builtins
    _print = print # saving old print function
    # or use some other function here
    builtins.print = lambda *args, **kwargs: _print(‘new printing’, *args, **kwargs)
    yield
    builtins.print = _print
with replace_print():

 

虽然上面这段代码也能达到重写 print 函数的目的,但是不推荐使用。
print 可以参与列表理解和其他语言构造
# Python 3
result = process(x) if is_valid(x) else print('invalid item: ', x)
#### 数字文字中的下划线(千位分隔符)
在 PEP-515 中引入了在数字中加入下划线。在 Python3 中,下划线可用于整数,浮点和复数,这个下划线起到一个分组的作用
# grouping decimal numbers by thousands
one_million = 1_000_000
# grouping hexadecimal addresses by words
addr = 0xCAFE_F00D
# grouping bits into nibbles in a binary literal
flags = 0b_0011_1111_0100_1110
# same, for string conversions
flags = int(‘0b_1111_0000’, 2)
也就是说10000,你可以写成10\_000这种形式。
#### 简单可看的字符串格式化f-string
Python2提供的字符串格式化系统还是不够好,太冗长麻烦,通常我们会写这样一段代码来输出日志信息:
# Python 2
print ‘{batch:3} {epoch:3} / {total_epochs:3}  accuracy: {acc_mean:0.4f}±{acc_std:0.4f} time: {avg_time:3.2f}’.format(
    batch=batch, epoch=epoch, total_epochs=total_epochs,
    acc_mean=numpy.mean(accuracies), acc_std=numpy.std(accuracies),
    avg_time=time / len(data_batch)
)
# Python 2 (too error-prone during fast modifications, please avoid):
print ‘{:3} {:3} / {:3}  accuracy: {:0.4f}±{:0.4f} time: {:3.2f}’.format(
    batch, epoch, total_epochs, numpy.mean(accuracies), numpy.std(accuracies),
    time / len(data_batch)
)
输出结果为

120  12 / 300  accuracy: 0.8180±0.4649 time: 56.60

在 Python3.6 中引入了 f-string (格式化字符串)
print(f’{batch:3} {epoch:3} / {total_epochs:3}  accuracy: {numpy.mean(accuracies):0.4f}±{numpy.std(accuracies):0.4f} time: {time / len(data_batch):3.2f}')
关于 f-string 的用法可以看我在b站的视频[https://www.bilibili.com/video/av31608754]
#### '/'和'//'在数学运算中有着明显的区别
     对于数据科学来说,这无疑是一个方便的改变
data = pandas.read_csv(‘timing.csv’)
velocity = data[‘distance’] / data[‘time’]
Python2 中的结果取决于“时间”和“距离”(例如,以米和秒为单位)是否存储为整数。在python3中,这两种情况下的结果都是正确的,因为除法的结果是浮点数。  
 另一个例子是 floor 除法,它现在是一个显式操作

n_gifts = money // gift_price  # correct for int and float arguments

nutshell

from operator import truediv, floordiv

truediv.doc, floordiv.doc

(‘truediv(a, b) – Same as a / b.’, ‘floordiv(a, b) – Same as a // b.’)

(3 / 2), (3 // 2), (3.0 // 2.0)

(1.5, 1, 1.0)

值得注意的是,这种规则既适用于内置类型,也适用于数据包提供的自定义类型(例如 numpy 或pandas)。
#### 严格的顺序
下面的这些比较方式在 Python3 中都属于合法的。
3 < ‘3’
2 < None
(3, 4) < (3, None)
(4, 5) < [4, 5]
对于下面这种不管是2还是3都是不合法的

(4, 5) == [4, 5]

如果对不同的类型进行排序

sorted([2, ‘1’, 3])

虽然上面的写法在 Python2 中会得到结果 [2, 3, '1'],但是在 Python3 中上面的写法是不被允许的。
检查对象为 None 的合理方案
if a is not None:
  pass
if a: # WRONG check for None
  pass
#### NLP Unicode问题
s = ‘您好’
print(len(s))
print(s[:2])
输出内容
Python 2: 6
��
Python 3: 2
您好.
还有下面的运算
x = u’со’
x += ‘co’ # ok
x += ‘со’ # fail
Python2 失败了,Python3 正常工作(因为我在字符串中使用了俄文字母)。  
 在 Python3 中,字符串都是 unicode 编码,所以对于非英语文本处理起来更方便。
一些其他操作
‘a’ < type < u’a’  # Python 2: True
‘a’ < u’a’         # Python 2: False
再比如
from collections import Counter
Counter(‘Möbelstück’)
在 Python2 中

Counter({‘Ã’: 2, ‘b’: 1, ‘e’: 1, ‘c’: 1, ‘k’: 1, ‘M’: 1, ‘l’: 1, ‘s’: 1, ‘t’: 1, ‘¶’: 1, ‘¼’: 1})

在 Python3 中

Counter({‘M’: 1, ‘ö’: 1, ‘b’: 1, ‘e’: 1, ‘l’: 1, ‘s’: 1, ‘t’: 1, ‘ü’: 1, ‘c’: 1, ‘k’: 1})

虽然可以在 Python2 中正确地处理这些结果,但是在 Python3 中看起来结果更加友好。
#### 保留了字典和\*\*kwargs的顺序
在CPython3.6+ 中,默认情况下,dict 的行为类似于 OrderedDict ,都会自动排序(这在Python3.7+ 中得到保证)。同时在字典生成式(以及其他操作,例如在 json 序列化/反序列化期间)都保留了顺序。
import json
x = {str(i):i for i in range(5)}
json.loads(json.dumps(x))
# Python 2
{u’1’: 1, u’0’: 0, u’3’: 3, u’2’: 2, u’4’: 4}
# Python 3
{‘0’: 0, ‘1’: 1, ‘2’: 2, ‘3’: 3, ‘4’: 4}
这同样适用于\*\*kwargs(在Python 3.6+中),它们的顺序与参数中出现的顺序相同。当涉及到数据管道时,顺序是至关重要的,以前我们必须以一种繁琐的方式编写它
from torch import nn
# Python 2
model = nn.Sequential(OrderedDict([
          (‘conv1’, nn.Conv2d(1,20,5)),
          (‘relu1’, nn.ReLU()),
          (‘conv2’, nn.Conv2d(20,64,5)),
          (‘relu2’, nn.ReLU())
        ]))
而在 Python3.6 以后你可以这么操作
# Python 3.6+, how it can be done, not supported right now in pytorch
model = nn.Sequential(
    conv1=nn.Conv2d(1,20,5),
    relu1=nn.ReLU(),
    conv2=nn.Conv2d(20,64,5),
    relu2=nn.ReLU())
)
#### 可迭代对象拆包
类似于元组和列表的拆包,具体看下面的代码例子。
# handy when amount of additional stored info may vary between experiments, but the same code can be used in all cases
model_paramteres, optimizer_parameters, *other_params = load(checkpoint_name)
# picking two last values from a sequence
*prev, next_to_last, last = values_history
# This also works with any iterables, so if you have a function that yields e.g. qualities,
# below is a simple way to take only last two values from a list
*prev, next_to_last, last = iter_train(args)
#### 提供了更高性能的pickle
Python2
import cPickle as pickle
import numpy
print len(pickle.dumps(numpy.random.normal(size=[1000, 1000])))
# result: 23691675
Python3
import pickle
import numpy
len(pickle.dumps(numpy.random.normal(size=[1000, 1000])))
# result: 8000162
空间少了三倍。而且要快得多。实际上,使用 protocol=2 参数可以实现类似的压缩(但不是速度),但是开发人员通常忽略这个选项(或者根本不知道)。  
 注意:pickle 不安全(并且不能完全转移),所以不要 unpickle 从不受信任或未经身份验证的来源收到的数据。
#### 更安全的列表推导
labels = 
predictions = [model.predict(data) for data, labels in dataset]
# labels are overwritten in Python 2
# labels are not affected by comprehension in Python 3
#### 更简易的super()
在python2中 super 相关的代码是经常容易写错的。
# Python 2
class MySubClass(MySuperClass):
    def init(self, name, **options):
        super(MySubClass, self).init(name=‘subclass’, **options)
# Python 3
class MySubClass(MySuperClass):
    def init(self, name, **options):
        super().init(name=‘subclass’, **options)
这一点Python3得到了很大的优化,新的 super() 可以不再传递参数。  
 同时在调用顺序上也不一样。
#### IDE能够给出更好的提示
使用Java、c#等语言进行编程最有趣的地方是IDE可以提供很好的建议,因为在执行程序之前,每个标识符的类型都是已知的。  
 在python中这很难实现,但是注释会帮助你
![](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X3BuZy9NaHZGeDl4dFFpY1prWHdITjNocHJMdWhvbHV5NVlYMFhJaWJCcTVQRmlhQ21DTlVSOFZyNjdjSjc5VEtxMjZpYnZtVWliNExPRWtDczZSRHp3bG01eElQNnJRLzY0MA?x-oss-process=image/format,png)
这是一个带有变量注释的 PyCharm 提示示例。即使在使用的函数没有注释的情况下(例如,由于向后兼容性),也可以使用这种方法。
#### Multiple unpacking
如何合并两个字典
x = dict(a=1, b=2)
y = dict(b=3, d=4)
# Python 3.5+
z = {**x, **y}
# z = {‘a’: 1, ‘b’: 3, ‘d’: 4}, note that value for b is taken from the latter dict.
我在b站同样发布了相关的视频[https://www.bilibili.com/video/av50376841]  
 同样的方法也适用于列表、元组和集合(a、b、c是任何迭代器)
[*a, *b, *c] # list, concatenating
(*a, *b, *c) # tuple, concatenating
{*a, *b, *c} # set, union
函数还支持\*arg和\*\*kwarg的多重解包
# Python 3.5+
do_something(**{**default_settings, **custom_settings})
# Also possible, this code also checks there is no intersection between keys of dictionaries
do_something(**first_args, **second_args)
#### Data classes
Python 3.7引入了Dataclass类,它适合存储数据对象。数据对象是什么?下面列出这种对象类型的几项特征,虽然不全面:
* 它们存储数据并表示某种数据类型,例如:数字。对于熟悉ORM的朋友来说),数据模型实例就是一个数据对象。它代表了一种特定的实体。它所具有的属性定义或表示了该实体。
* 它们可以与同一类型的其他对象进行比较。例如:大于、小于或等于。  
 当然还有更多的特性,下面的这个例子可以很好的替代namedtuple的功能。
@dataclass
class Person:
    name: str
    age: int
@dataclass
class Coder(Person):
    preferred_language: str = ‘Python 3’

最后

不知道你们用的什么环境,我一般都是用的Python3.6环境和pycharm解释器,没有软件,或者没有资料,没人解答问题,都可以免费领取(包括今天的代码),过几天我还会做个视频教程出来,有需要也可以领取~

给大家准备的学习资料包括但不限于:

Python 环境、pycharm编辑器/永久激活/翻译插件

python 零基础视频教程

Python 界面开发实战教程

Python 爬虫实战教程

Python 数据分析实战教程

python 游戏开发实战教程

Python 电子书100本

Python 学习路线规划

相关文章
|
2月前
|
IDE 开发工具 iOS开发
【10月更文挑战第3天】「Mac上学Python 3」入门篇3 - 安装Python与开发环境配置
本篇将详细介绍如何在Mac系统上安装Python,并配置Python开发环境。内容涵盖Python的安装、pip包管理工具的配置与国内镜像源替换、安装与配置PyCharm开发工具,以及通过PyCharm编写并运行第一个Python程序。通过本篇的学习,用户将完成Python开发环境的搭建,为后续的Python编程工作打下基础。
186 2
【10月更文挑战第3天】「Mac上学Python 3」入门篇3 - 安装Python与开发环境配置
|
2月前
|
安全 Linux 开发者
|
2月前
为什么 GitHub Pages 的文章标题不能以 @ 开头?
本文记录了一个 GitHub Pages 博客网页上文章标题以 `@` 开头导致的问题,并分析了原因,提供了解决方法。
42 0
|
3月前
|
Shell Linux Python
python执行linux系统命令的几种方法(python3经典编程案例)
文章介绍了多种使用Python执行Linux系统命令的方法,包括使用os模块的不同函数以及subprocess模块来调用shell命令并处理其输出。
45 0
|
3月前
|
调度 数据库 Python
python中APScheduler的使用详解(python3经典编程案例)
文章详细讲解了在Python中使用APScheduler来安排和执行定时任务的方法,包括不同调度器的配置与使用场景。
106 0
|
3月前
|
数据挖掘 Python
用python的tushare模块分析股票案例(python3经典编程案例)
该文章提供了使用Python的tushare模块分析股票数据的案例,展示了如何获取股票数据以及进行基本的数据分析。
148 0
|
3月前
|
存储 数据库 Python
python的对象数据库ZODB的使用(python3经典编程案例)
该文章介绍了如何使用Python的对象数据库ZODB来进行数据存储,包括ZODB的基本操作如创建数据库、存储和检索对象等,并提供了示例代码。
46 0
|
3月前
|
调度 Python
python3 协程实战(python3经典编程案例)
该文章通过多个实战案例介绍了如何在Python3中使用协程来提高I/O密集型应用的性能,利用asyncio库以及async/await语法来编写高效的异步代码。
22 0
|
3月前
|
安全 Java 调度
python3多线程实战(python3经典编程案例)
该文章提供了Python3中多线程的应用实例,展示了如何利用Python的threading模块来创建和管理线程,以实现并发执行任务。
47 0
|
3月前
|
调度 Python
python3多进程实战(python3经典编程案例)
该文章提供了Python3中使用多进程的实战案例,展示了如何通过Python的标准库`multiprocessing`来创建和管理进程,以实现并发任务的执行。
103 0
下一篇
无影云桌面