python源码解读_python代码解释

简介: python源码解读_python代码解释

PyObject

// object.h
#define PyObject\_HEAD \
 \_PyObject\_HEAD\_EXTRA \ // 一般情况下为空
    int ob_refcnt;  // 引用计数
    struct _typeobject \*ob_type; //指定一个对象类型的类型对象
typedef struct _object{
    PyObject_HEAD
} PyObject;

每一个python对象除了PyObject之外还需要额外的内存,PyObject定义了必须要的数据比如PyIntObject

// intobject.h
typedef struct _object{
    PyObject_HEAD
    long ob_ival;
w} PyIntObject;

对于变长对象python有新的抽象

// object.h
#define PyObject\_VAR\_HEAD \
 PyObject\_HEAD \
 long ob\_size; /一般指容器内元素数量
typedef struct _object{
    PyObject_VAR_HEAD
} PyVarObject;

类型对象

PyObject占用内存大小是对象的元信息,元信息和对象所属类型密切相关

// object.h
typedef struct _typeobject{
    PyObject_VAR_HEAD
    char \*tp_name;  //print 信息"<module>.<name>"
    int tp_basicsize, item_size; //为了分配内存大小
    destructor tp_dealloc;
    printfunc tp_print;
    hashfunc tp_hash;
    ternaryfunc tp_call;
    ...
} PyTypeObject;
对象的创建

python对象的创建主要有两种方式

  • C API(对于python的内建对象, 直接分配内存)
  • 泛型API AOL
  • 类型相关API COL
  • 类型对象创建(用户自定义对象,因为不可能事先提供这类C方法),大致流程如下
    会调用ob_type 所指定的PyTyoeObject类的tp_new方法,如果tp_new是NULL会追溯tp_base所指向的ob_typetp_new方法,最终定位的tp_new(因为所有类继承object会有保底的tp_new方法)负责内存的申请(类似c++的new)
    之后通过tp_init初始化(类似c++的构造函数)
类型的类型

PyTypeObect 实际也是有ob_type属性的,其为PyType_Type(即type, 负责PyTypeObect的创建,即metaclass)

下图以int 为例说明了这些关系,也就是所知的python里面class,object,type的关系

Python中的整数对象

在Python的所有对象中,整数对象最简单且使用最频繁,故我们首先学习整数对象。关于整数对象的源码在Objects.intobjects.c中,整数对象是通过PyIntObject对象来完成的,在创建一个PyIntObject对象之后,就再也不能改变该对象的值了。定义为:

typedef struct {
    prObject_HEAD;
    long ob_ival;
}PyIntObject;

主要是PyIntObjectPyInt_Type,其他和普遍的PyObject, PyTyoeObject没什么,值得关注的有

  • python2中稍小一点的数直接用C语言中的long去存储,稍大一点的数(超过long的承受范围)会使用python的long对象去存储,而python3不会作区分,统一用longObect去存储,实现用到了柔性数组,感兴趣可以查一下
  • 小整形数组的内存池和大整形对象的内存链的维护,避免频繁malloc

在Python中,整数的使用是很广泛的,对应的,它的创建和释放也将会很频繁,那么如何设计一个高效的机制,使得整数对象的使用不会成为Python的瓶颈?在Python中是使用整数对象的缓冲池机制来解决此问题。使用缓冲池机制,那意味着运行时的整数对象并不是一个个独立的,而是相关联结成一个庞大的整数对象系统了。

小整形对象

// [intobject.c]
#ifndef NSMALLPOSINTS
#define NSMALLPOSINTS 257
#endif
#ifndef NSMALLNEGINTS
#define NSMALLNEGINTS 5
#endif
#if NSMALLNEGINTS + NSMALLPOSINTS > 0
/\* References to small integers are saved in this array so that they
 can be shared.
 The integers that are saved are those in the range
 -NSMALLNEGINTS (inclusive) to NSMALLPOSINTS (not inclusive).
\*/
static PyIntObject \*small_ints[NSMALLNEGINTS + NSMALLPOSINTS];
#endif

在实际的编程中,数值比较小的整数,比如1,2,等等,这些在程序中是频繁使用到的,而Python中,所有的对象都存活在系统堆上,也就是说,如果没有特殊的机制,对于小整数对象,Python将一次次的malloc在堆上申请空间,然后free,这样的操作将大大降低了运行效率。

那么如何解决呢?Python中,对小整数对象使用了对象池技术。

那么又有一个问题了,Python中的大对象和小对象如何区分呢?嗯,Python中确实有一种方法,用户可以调整大整数和小整数的分界点,从而动态的确定小整数的对象池中应该有多少个小整数对象,但是调整的方法只有自己修改源代码,然后重新编译。

大整数对象

对于小整数,小整数对象池中完全的缓存PyIntObject对象,对于其它对象,Python将提供一块内存空间,这些内存空间将由这些大整数轮流使用,也就是谁需要的时候谁使用。

比如,在Python中有一个PyIntBlock结构,维护了一块内存,其中保存了一些PyIntObject对象,维护对象的个数也可以做动态的调整。在Python运行的某个时刻,有一些内存已经被使用,而另一些内存则处于空闲状态,而这些空闲的内存必须组织起来,那样,当Python需要新的内存时,才能快速的获得所需的内存,在Python中使用一个单向链表(free_list)来管理所有的空闲内存。

// [intobject.c]
#define BLOCK\_SIZE 1000 /\* 1K less typical malloc overhead \*/
#define BHEAD\_SIZE 8 /\* Enough for a 64-bit pointer \*/
#define N\_INTOBJECTS ((BLOCK\_SIZE - BHEAD\_SIZE) / sizeof(PyIntObject))
struct _intblock {
    struct _intblock \*next;
    PyIntObject objects[N_INTOBJECTS];
};
typedef struct _intblock PyIntBlock;
static PyIntBlock \*block_list = NULL;
static PyIntObject \*free_list = NULL;

创建

如果小整数对象池机制被激活,则尝试使用小整数对象池;如果不能使用小整数对象池,则使用通用整数对象池。

可以创建int的代码理解这两块的使用

// [intobject.c]
PyObject \*
PyInt\_FromLong(long ival)
{
    register PyIntObject \*v;
#if NSMALLNEGINTS + NSMALLPOSINTS > 0 /\* 尝试使用小整数对象池 \*/
    if (-NSMALLNEGINTS <= ival && ival < NSMALLPOSINTS) {
        v = small_ints[ival + NSMALLNEGINTS];
        Py\_INCREF(v);
        return (PyObject \*) v;
    }
#endif
    if (free_list == NULL) {
        if ((free_list = fill\_free\_list()) == NULL)
            return NULL;
    }
    /\* Inline PyObject\_New \*/
    v = free_list;
    free_list = (PyIntObject \*)v->ob_type;  /\* 有一个看似不合适但是比较方便的地方,freelist会通过 ob\_type存放可用空间的pyObject的地址(类似链表的next),而不是 PyTyoeObject \*/
    (void)PyObject\_INIT(v, &PyInt_Type);
    v->ob_ival = ival;
    return (PyObject \*) v;
}

下面是关于freelist的申请,和freelist和block_list的维护有关的代码

// [intobject.c]
static PyIntObject \*
fill\_free\_list(void)
{
    PyIntObject \*p, \*q;
    /\* 申请大小为sizeof(PyIntBlock)的内存空间,并链接到已有的block list中 \*/
    p = (PyIntObject \*) PyMem\_MALLOC(sizeof(PyIntBlock));
    ((PyIntBlock \*)p)->next = block_list;
    block_list = (PyIntBlock \*)p;
    /\* 将PyIntBlock中的PyIntObject数组——objects转变成单向链表\*/
    p = &((PyIntBlock \*)p)->objects[0];
    q = p + N_INTOBJECTS;
    while (--q > p)
        q->ob_type = (struct _typeobject \*)(q-1); /\* 上一段代码中所提到的不合适的地方
 Py\_TYPE(q) = NULL;
 return p + N\_INTOBJECTS - 1;
}

这样,freelist会指向可以分配内存的地址,但是如果由之前分配的PyIntObject被释放了,freelist需要将被释放的地址重新使用才可以,这个是通过PyIntObect的析构函数来实现的

// [intobject.c]
static void
int\_dealloc(PyIntObject \*v)
{
    if (PyInt\_CheckExact(v)) {   // 如果不是派生类这么执行,保证freelist的完整性
        v->ob_type = (struct _typeobject \*)free_list;
        free_list = v;
    }
    else                        // 如果是派生类,则执行正常的析构流程
        v->ob_type->tp\_free((PyObject \*)v);
}

Python中的字符串对象

PyStringObject和PyString_Type

//[stringobject.h]
typedef struct{
    PyObject_VAR_HEAD
    long ob_shash;
    int ob_sstate;
    char ob_sval[1];
} PyStringObject;
//[stringobject.c]
PyTypeObject PyString_Type = {
    PyObject\_HEAD\_INIT(&PyType_Type)
    0,
    "str",
    sizeof(PyStringObject), // basic size
    sizeof(char), //itemsize
    // ...
}
  • ob_sval指的是一段长度为ob_size+1个字节的内存,必须满足ob_sval[ob_size] == ‘\0’
  • ob_shash缓存的该对象的hash
  • ob_sstate标记了该对象是否已经经过intern机制的处理

创建PyStringObject对象

//[stringobject.c]
// 从原生字符串创建
PyObject\* PyString\_FromString(const char \*str) {
    register size_t size;
    register PyStringObejct \*op;
    
    size = strlen(str);
    if (size > PY_SSIZE_T_MAX) {
        return NULL;
    }
    if (size == 0 && (op = nullstring )!= NULL) {  // intern机制: 和下面的一个分支都是为了缓存特定的对象,一个是空字符串,一个是单个字符字符串,第一次使用后会存在,之后不必再次创建PyObject对象(这些对象之前都被初始化成了NULL)
        return (PyObject \*) op;
    }
    if (size == 1 && (op = characters[\*str & UCHAR_MAX]) != NULL) {
        return (PyObject \*) op;
    }
    op = (PyStringObject \*)PyObject\_MALLOC(sizeof(PyStringObject) + size); // 加上包含'\0'的额外内存
    PyObject\_INIT\_VAR(ob, &PyString_Type, size);
    op->ob_shash=-1;
    op->ob_sstate=SSTATE_NOT_INTERNED;
    memcpy(op->ob_sval, str, size+1);
    if (size==0) {
        PyObject \*t = (PyObject \*) op;
        PyString\_InternInPlace(&t);
        op = (PyStringObject \*) t;
        nullstring = op;
    } else if (size == 1) {
        PyObject \*t = (PyObject \*) op;
        PyString\_InternInPlace(&t);
        op = (PyStringObject \*) t;
        characters[\*str & UCHAR_MAX] = op;
    }
    return (PyObejct \*) op;
}

字符串对象的intern机制

//[stringobject.c]
void PyString\_InternInPlace(PyObject \*\*p) {
    register PyStringObject \*s = (PyStringObject \*)(\*p);
    PyObject \*t;
    if (!PyString\_CheckExact(s)) return;
    if (PyString\_CHECK\_INTERNED(s)) return;
    if (interned == NULL) {
        interned = PyDict\_New();
    }
    t = PyDict\_GetItem(interned, (PyObject \*) s);
    if (t) {
        Py\_INCREF(t);
        Py\_DECREF(\*p);
        \*p = t;
        return;
    }
    PyDict\_SetItem(interned, (PyObject \*)s, (PyObject \*)s);
    s->ob_refcnt -= 2;  // 减去key 和 value的引用
    PyString\_CHECK\_INTERNED(s) = SSTATE_INTERNED_MORTAL;  // 当析构时会根据这个属性,做出在interned中删除的操作
}

characters 是静态变量static PyStringObject *characters[UCHAR_MAX+1]; 开始都是NULL指针

= join字符串效率比 + 好, 因为PyStringObject 是不可变对象(varObject只是因为是变长的),两者申请内存不同

join 计算所有 PyStringObject 的size 得出需要分配的内存,一次分配

= 而concat(+) 需要分配n-1次内存,并且伴有析构

python中的List对象

// [listobject.h]
typedef struct{
### 最后
Python崛起并且风靡,因为优点多、应用领域广、被大牛们认可。学习 Python 门槛很低,但它的晋级路线很多,通过它你能进入机器学习、数据挖掘、大数据,CS等更加高级的领域。Python可以做网络应用,可以做科学计算,数据分析,可以做网络爬虫,可以做机器学习、自然语言处理、可以写游戏、可以做桌面应用…Python可以做的很多,你需要学好基础,再选择明确的方向。这里给大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!
#### 👉Python所有方向的学习路线👈
Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
![](https://ucc.alicdn.com/images/user-upload-01/img_convert/604bae65027d4d67fb62410deb210454.png)
#### 👉Python必备开发工具👈
工欲善其事必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。
![](https://ucc.alicdn.com/images/user-upload-01/img_convert/fa276175617e0048f79437bd30465479.png)
#### 👉Python全套学习视频👈
我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。
![](https://ucc.alicdn.com/images/user-upload-01/img_convert/16ac689cb023166b2ffa9c677ac40fc0.png)
#### 👉实战案例👈
学python就与学数学一样,是不能只看书不做题的,直接看步骤和答案会让人误以为自己全都掌握了,但是碰到生题的时候还是会一筹莫展。
因此在学习python的过程中一定要记得多动手写代码,教程只需要看一两遍即可。
![](https://ucc.alicdn.com/images/user-upload-01/img_convert/0d8c31c50236a205928a1d8ae8a0b883.png)
#### 👉大厂面试真题👈
我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
![](https://ucc.alicdn.com/images/user-upload-01/img_convert/99461e47e58e503d2bc1dc6f4668534a.png)
**[需要这份系统化学习资料的朋友,可以戳这里无偿获取](https://bbs.csdn.net/topics/618317507)**
**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**


相关文章
|
2天前
|
缓存 监控 测试技术
Python中的装饰器:功能扩展与代码复用的利器###
本文深入探讨了Python中装饰器的概念、实现机制及其在实际开发中的应用价值。通过生动的实例和详尽的解释,文章展示了装饰器如何增强函数功能、提升代码可读性和维护性,并鼓励读者在项目中灵活运用这一强大的语言特性。 ###
|
5天前
|
缓存 开发者 Python
探索Python中的装饰器:简化代码,增强功能
【10月更文挑战第35天】装饰器在Python中是一种强大的工具,它允许开发者在不修改原有函数代码的情况下增加额外的功能。本文旨在通过简明的语言和实际的编码示例,带领读者理解装饰器的概念、用法及其在实际编程场景中的应用,从而提升代码的可读性和复用性。
|
2天前
|
Python
探索Python中的装饰器:简化代码,提升效率
【10月更文挑战第39天】在编程的世界中,我们总是在寻找使代码更简洁、更高效的方法。Python的装饰器提供了一种强大的工具,能够让我们做到这一点。本文将深入探讨装饰器的基本概念,展示如何通过它们来增强函数的功能,同时保持代码的整洁性。我们将从基础开始,逐步深入到装饰器的高级用法,让你了解如何利用这一特性来优化你的Python代码。准备好让你的代码变得更加优雅和强大了吗?让我们开始吧!
7 1
|
7天前
|
设计模式 缓存 监控
Python中的装饰器:代码的魔法增强剂
在Python编程中,装饰器是一种强大而灵活的工具,它允许程序员在不修改函数或方法源代码的情况下增加额外的功能。本文将探讨装饰器的定义、工作原理以及如何通过自定义和标准库中的装饰器来优化代码结构和提高开发效率。通过实例演示,我们将深入了解装饰器的应用,包括日志记录、性能测量、事务处理等常见场景。此外,我们还将讨论装饰器的高级用法,如带参数的装饰器和类装饰器,为读者提供全面的装饰器使用指南。
|
2天前
|
存储 缓存 监控
掌握Python装饰器:提升代码复用性与可读性的利器
在本文中,我们将深入探讨Python装饰器的概念、工作原理以及如何有效地应用它们来增强代码的可读性和复用性。不同于传统的函数调用,装饰器提供了一种优雅的方式来修改或扩展函数的行为,而无需直接修改原始函数代码。通过实际示例和应用场景分析,本文旨在帮助读者理解装饰器的实用性,并鼓励在日常编程实践中灵活运用这一强大特性。
|
5天前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到Python代码实践
【10月更文挑战第36天】本文将深入浅出地介绍机器学习的基本概念、主要算法及其在Python中的实现。我们将通过实际案例,展示如何使用scikit-learn库进行数据预处理、模型选择和参数调优。无论你是初学者还是有一定基础的开发者,都能从中获得启发和实践指导。
11 2
|
7天前
|
数据库 Python
异步编程不再难!Python asyncio库实战,让你的代码流畅如丝!
在编程中,随着应用复杂度的提升,对并发和异步处理的需求日益增长。Python的asyncio库通过async和await关键字,简化了异步编程,使其变得流畅高效。本文将通过实战示例,介绍异步编程的基本概念、如何使用asyncio编写异步代码以及处理多个异步任务的方法,帮助你掌握异步编程技巧,提高代码性能。
20 4
|
Linux C语言 开发者
源码安装Python学会有用还能装逼 | 解决各种坑
相信朋友们都看过这个零基础学习Python的开篇了
447 0
源码安装Python学会有用还能装逼 | 解决各种坑