Foundation Model(基石)模型

本文涉及的产品
大数据开发治理平台DataWorks,资源组抵扣包 750CU*H
简介: Foundation Model是人工智能中的基础模型,通过大规模预训练学习通用语义和知识,适用于多种任务,包括NLP、计算机视觉和语音识别。其重要性在于解决问题的内在逻辑(Emergence)和普适性(Homogenization)。在机器人学中,这些模型能提升系统性能并充当先验知识。GPT-3、BERT、ViT和Swin Transformer是其成功应用的例子,展示出广阔的应用潜力和研究价值,将随着数据和计算能力的增长持续推动AI发展。

Foundation Model(基石模型)是一种在人工智能领域中广泛应用的基础模型,也被称为大模型。


https://chatgpt.ciilii.com/show/news-967.html

这些模型通过在大规模、多样化的数据上进行预训练,学习了通用的语义和知识结构,从而能够在各种下游任务中展现出强大的表现力和适应性。

Foundation Model的重要性主要体现在两个方面:Emergence和homogenization。Emergence指的是解决问题的内在方法逻辑,而homogenization则是指这种逻辑在多大程度上能在各种任务上都能使用。这些模型通过深度学习和自监督学习等关键概念进行设计,能够在各种自然语言处理(NLP)、计算机视觉、语音识别等任务中发挥巨大作用。

在机器人学领域,Foundation Model的引入有望从感知、决策和控制等方面提升机器人系统的性能,推动机器人学的发展。这些模型可以作为机器人系统的先验知识,减少对任务特定数据的依赖,同时也可以作为机器人系统的通用组件,实现感知、推理和规划等核心功能。

目前,Foundation Model已经在许多领域取得了显著的成果,如自然语言处理领域的GPT-3和BERT,计算机视觉领域的ViT和Swin Transformer等。这些模型的出现不仅推动了人工智能技术的发展,也为各行各业带来了更多的创新和可能性。

总的来说,Foundation Model作为人工智能体系的基石,具有广泛的应用前景和重要的研究价值。未来随着数据规模的扩大和计算能力的提升,这些模型的表现力和适应性将会得到进一步提升,为人工智能技术的发展注入更多的活力。

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
一站式大数据开发治理平台DataWorks初级课程
DataWorks 从 2009 年开始,十ー年里一直支持阿里巴巴集团内部数据中台的建设,2019 年双 11 稳定支撑每日千万级的任务调度。每天阿里巴巴内部有数万名数据和算法工程师正在使用DataWorks,承了阿里巴巴 99%的据业务构建。本课程主要介绍了阿里巴巴大数据技术发展历程与 DataWorks 几大模块的基本能力。 产品官网 https://www.aliyun.com/product/bigdata/ide 大数据&AI体验馆 https://workbench.data.aliyun.com/experience.htm#/ 帮助文档https://help.aliyun.com/zh/dataworks 课程目标  通过讲师的详细讲解与实际演示,学员可以一边学习一边进行实际操作,可以深入了解DataWorks各大模块的使用方式和具体功能,让学员对DataWorks数据集成、开发、分析、运维、安全、治理等方面有深刻的了解,加深对阿里云大数据产品体系的理解与认识。 适合人群  企业数据仓库开发人员  大数据平台开发人员  数据分析师  大数据运维人员  对于大数据平台、数据中台产品感兴趣的开发者
相关文章
|
7月前
|
机器学习/深度学习 自然语言处理 PyTorch
Transformers入门指南:从零开始理解Transformer模型
【10月更文挑战第29天】作为一名机器学习爱好者,我深知在自然语言处理(NLP)领域,Transformer模型的重要性。自从2017年Google的研究团队提出Transformer以来,它迅速成为NLP领域的主流模型,广泛应用于机器翻译、文本生成、情感分析等多个任务。本文旨在为初学者提供一个全面的Transformers入门指南,介绍Transformer模型的基本概念、结构组成及其相对于传统RNN和CNN模型的优势。
5301 1
|
5月前
|
人工智能 自然语言处理 并行计算
VITRON:开源像素级视觉大模型,同时满足图像与视频理解、生成、分割和编辑等视觉任务
VITRON 是由 Skywork AI、新加坡国立大学和南洋理工大学联合推出的像素级视觉大模型,支持图像与视频的理解、生成、分割和编辑,适用于多种视觉任务。
430 13
VITRON:开源像素级视觉大模型,同时满足图像与视频理解、生成、分割和编辑等视觉任务
|
6月前
|
JSON 前端开发 Java
【Bug合集】——Java大小写引起传参失败,获取值为null的解决方案
类中成员变量命名问题引起传送json字符串,但是变量为null的情况做出解释,@Data注解(Spring自动生成的get和set方法)和@JsonProperty
|
8月前
|
机器学习/深度学习 自然语言处理 数据建模
三种Transformer模型中的注意力机制介绍及Pytorch实现:从自注意力到因果自注意力
本文深入探讨了Transformer模型中的三种关键注意力机制:自注意力、交叉注意力和因果自注意力,这些机制是GPT-4、Llama等大型语言模型的核心。文章不仅讲解了理论概念,还通过Python和PyTorch从零开始实现这些机制,帮助读者深入理解其内部工作原理。自注意力机制通过整合上下文信息增强了输入嵌入,多头注意力则通过多个并行的注意力头捕捉不同类型的依赖关系。交叉注意力则允许模型在两个不同输入序列间传递信息,适用于机器翻译和图像描述等任务。因果自注意力确保模型在生成文本时仅考虑先前的上下文,适用于解码器风格的模型。通过本文的详细解析和代码实现,读者可以全面掌握这些机制的应用潜力。
554 3
三种Transformer模型中的注意力机制介绍及Pytorch实现:从自注意力到因果自注意力
|
11月前
|
机器学习/深度学习 自然语言处理 监控
命名实体识别(Named Entity Recognition, NER)
命名实体识别(Named Entity Recognition, NER)
418 7
|
7月前
|
并行计算 Linux PyTorch
在云上部署ChatGLM2-6B大模型(GPU版)
本教程指导您在配置了Alibaba Cloud Linux 3的GPU云服务器上,安装大模型运行环境(如Anaconda、Pytorch等),并部署大语言模型,最后通过Streamlit运行大模型对话网页Demo。教程包括创建资源、登录ECS实例、安装及校验CUDA、NVIDIA驱动和cuDNN等步骤。
|
11月前
|
存储 安全 网络安全
如何注册UGREENLink服务?
【7月更文挑战第1天】如何注册UGREENLink服务?
1215 3
|
8月前
|
机器学习/深度学习 人工智能 算法
[大语言模型-算法优化] 微调技术-LoRA算法原理及优化应用详解
[大语言模型-算法优化] 微调技术-LoRA算法原理及优化应用详解
546 0
[大语言模型-算法优化] 微调技术-LoRA算法原理及优化应用详解
|
8月前
|
机器学习/深度学习 自然语言处理 并行计算
探索深度学习中的Transformer模型及其在自然语言处理中的应用
【10月更文挑战第6天】探索深度学习中的Transformer模型及其在自然语言处理中的应用
464 0
|
12月前
|
数据采集 人工智能 算法
视觉语言模型导论:这篇论文能成为你进军VLM的第一步
【6月更文挑战第20天】探索AI如何理解与生成图像和文本,VLM结合图像与文本映射,涉及图像描述、问答等任务。论文由多所名校和机构研究人员共创,介绍VLM历史、类型(对比学习、掩码、生成、预训练)及应用,如图像生成和问答。同时,讨论数据质量、计算资源和模型可解释性的挑战。[阅读更多](https://arxiv.org/pdf/2405.17247)
374 2

热门文章

最新文章