两个Python脚本轻松解决ETL工作:统计多个服务器下所有数据表信息(1)

简介: 两个Python脚本轻松解决ETL工作:统计多个服务器下所有数据表信息(1)

正文

print(databases_name)

return databases_name

  • 提取服务器下所有数据库名,用于后续SQL语句的拼接,利用列表的remove方法移除不需要的数据库

3)获取表详细信息并保存

def save(self, databases_name, cursor, server_name):

“”“获取表信息并保存”“”

加入count是为了换行写入数据

count = self.count
databases_name:[‘master’, ‘tempdb’, ‘model’, ‘msdb’, ‘ReportServer’, ‘ReportServerTempDB’, ‘test’]

取出每个库名,用于拼接sql,获取对应库名下表信息

for database in databases_name:
sql = ‘’’
USE [%s]
SELECT a.name table_name,
a.crdate crdate,
b.rows rows,
8*b.reserved/1024 reserved,
rtrim(8*b.dpages/1024) used,
8*(b.reserved-b.dpages)/1024 unused
FROM sysobjects AS a
INNER JOIN sysindexes AS b ON a.id = b.id
WHERE ( a.type = ‘u’ )
AND ( b.indid IN ( 0, 1 ) )
ORDER BY a.name,b.rows DESC;
‘’’ % database
cursor.execute(sql)
rows = cursor.fetchall() # 逐行读取
for i in rows:

要写入excel的数据

server = server_name
database_name = database
table_name = i[0]
crdate = i[1]
rows_size = i[2]
reserved = i[3]
used = i[4]
unused = i[5]

打印获取到的数据

print(server, database_name, table_name, crdate, rows_size, reserved, used, unused)

row:count所对应的就是行数,从第二行开始累加,colum:表示第几列,value:表示插入的值

self.wb.cell(row=count, column=1, value=server)
self.wb.cell(row=count, column=2, value=database_name)
self.wb.cell(row=count, column=3, value=table_name)
self.wb.cell(row=count, column=4, value=crdate)
self.wb.cell(row=count, column=5, value=rows_size)
self.wb.cell(row=count, column=6, value=reserved)
self.wb.cell(row=count, column=7, value=used)
self.wb.cell(row=count, column=8, value=unused)

count加1,进入到下一行写入数据

count += 1

self.count = count

  • 拼接SQL效果:查看表名所对应建表时间、数据表总行数、数据表总大小、使用大小、未使用大小

4)实现主要逻辑

def main(self):

“”“实现主要逻辑”“”

1.创建Excel表对象,设置列名

self.ws = op.Workbook()
self.wb = self.ws.create_sheet(index=0)
self.wb.cell(row=1, column=1, value=‘服务器地址’)
self.wb.cell(row=1, column=2, value=‘库名’)
self.wb.cell(row=1, column=3, value=‘表名’)
self.wb.cell(row=1, column=4, value=‘建表时间’)
self.wb.cell(row=1, column=5, value=‘数据表总行数’)
self.wb.cell(row=1, column=6, value=‘数据表总大小(MB)’)
self.wb.cell(row=1, column=7, value=‘使用大小(MB)’)
self.wb.cell(row=1, column=8, value=‘未使用大小(MB)’)
self.count = 2 # 定义为全局变量每次用完会更新

服务器列表,括号内为:服务器名、账号、密码

如果多个服务器元组用逗号隔开

list = [(‘.’, ‘sa’, ‘yuan427’)]

2.遍历服务器列表,实现统计多个服务器

for server in list:
server_name = server[0]
user_name = server[1]
password = server[2]
conn = pymssql.connect(server_name, user_name, password)
if conn:
print(“连接成功!”)
cursor = conn.cursor()

3.获取库名

databases_name = self.get_databases_name(cursor)

4.获取详细信息并保存

self.save(databases_name, cursor, server_name)

所有服务器表插入完后保存

excel_name = “./本地数据库统计.xlsx”

self.ws.save(excel_name)

关闭游标,关闭数据库

cursor.close()
conn.close()
  • 1.在服务器列表循环外创建Excel文件
  • 2.遍历服务器列表,实现统计多个服务器
  • 3.获取当前遍历服务器的所有库名
  • 4.用库名拼接SQL实现获取数据表详细信息
  • 5.换行保存在Excel文件

完整代码


需要修改的地方只有服务器地址、账号、密码,每一个服务器信息放一个元组中;如果有多个服务器用逗号隔开

import pymssql
import openpyxl as op
class ErTransUtils():
def get_databases_name(self, cursor):
“”“获取服务器下所有库名”“”
sql = ‘SELECT * FROM sys.sysdatabases’
cursor.execute(sql)
rows = cursor.fetchall() # 逐行读取

存储

databases_name = []
for list in rows:
databases_name.append(list[0])

移除系统库

databases_name.remove(“master”)
databases_name.remove(“model”)
databases_name.remove(“msdb”)
databases_name.remove(“tempdb”)

移除无用库

try:
databases_name.remove(“ReportServer”)
databases_name.remove(“ReportServerTempDB”)
except Exception as e:
print(e)
print(databases_name)
return databases_name
def save(self, databases_name, cursor, server_name):
“”“获取表信息并保存”“”

加入count是为了换行写入数据

count = self.count

databases_name:[‘master’, ‘tempdb’, ‘model’, ‘msdb’, ‘ReportServer’, ‘ReportServerTempDB’, ‘test’],取出每个库名

for database in databases_name:
sql = ‘’’
USE [%s]
SELECT a.name table_name,
a.crdate crdate,
b.rows rows,
8*b.reserved/1024 reserved,
rtrim(8*b.dpages/1024) used,
8*(b.reserved-b.dpages)/1024 unused
FROM sysobjects AS a
INNER JOIN sysindexes AS b ON a.id = b.id
WHERE ( a.type = ‘u’ )
AND ( b.indid IN ( 0, 1 ) )
ORDER BY a.name,b.rows DESC;
‘’’ % database
cursor.execute(sql)
rows = cursor.fetchall() # 逐行读取
for i in rows:

要写入excel的数据

server = server_name
database_name = database
table_name = i[0]
crdate = i[1]
rows_size = i[2]
reserved = i[3]
used = i[4]
unused = i[5]

打印获取到的数据

print(server, database_name, table_name, crdate, rows_size, reserved, used, unused)

self.wb.cell(row=count, column=1, value=server)
self.wb.cell(row=count, column=2, value=database_name)
self.wb.cell(row=count, column=3, value=table_name)
self.wb.cell(row=count, column=4, value=crdate)
self.wb.cell(row=count, column=5, value=rows_size)
self.wb.cell(row=count, column=6, value=reserved)
self.wb.cell(row=count, column=7, value=used)
self.wb.cell(row=count, column=8, value=unused)

count加1,进入到下一行写入数据

count += 1
self.count = count
def main(self):
“”“实现主要逻辑”“”

创建Excel表对象,设置列名

self.ws = op.Workbook()
self.wb = self.ws.create_sheet(index=0)
self.wb.cell(row=1, column=1, value=‘服务器地址’)
self.wb.cell(row=1, column=2, value=‘库名’)
self.wb.cell(row=1, column=3, value=‘表名’)
self.wb.cell(row=1, column=4, value=‘建表时间’)
self.wb.cell(row=1, column=5, value=‘数据表总行数’)
self.wb.cell(row=1, column=6, value=‘数据表总大小(MB)’)
self.wb.cell(row=1, column=7, value=‘使用大小(MB)’)
self.wb.cell(row=1, column=8, value=‘未使用大小(MB)’)
self.count = 2

服务器列表,括号内为:服务器名、账号、密码

如果多个服务器用逗号隔开

list = [(‘.’, ‘sa’, ‘yuan427’)]
for server in list:
server_name = server[0]
user_name = server[1]
password = server[2]
conn = pymssql.connect(server_name, user_name, password)
if conn:
print(“连接成功!”)
cursor = conn.cursor()
databases_name = self.get_databases_name(cursor)
self.save(databases_name, cursor, server_name)

所有服务器表插入完后保存

excel_name = “./本地数据库统计.xlsx”
self.ws.save(excel_name)

关闭游标,关闭数据库

cursor.close()
conn.close()
if name == ‘main’:
er = ErTransUtils()
er.main()

脚本2

=====================================================================

效果展示


自动创建服务器文件夹,服务器文件夹下是所有库文件夹,库文件夹下是以表名命名的Excel文件名,文件中有表字段名称、是否为主键、字段类型、字段长度、索引名称等。

  • 我本地的test库

  • 表中字段信息如下,代码设置了Excel表格式,网格根据字段数量自动填充

代码解析


由于和第一个脚本相似只讲讲思路

  • 1.获取所有数据库名
  • 2.获取库中所有表名,把库名和表名存放在元组内放入列表,如:[('test', 'student', 'UTIL_IP1', 'test4', 'test5', 'test6', 'TM_AP', 'test1', 'test2', 'test3', 'UTIL_IP')],第一个是库名其他都是表名
  • 3.拼接获取字段信息的SQL,把库名、表名传进去,SQL能获取到的信息如下图(拼接的地方为上面的库名和红框那的表名):

  • 4.设置Excel内格式:字体、加粗、居中、合并、网格线、行高、列宽等
  • 5.一个Excel文件保存完毕,生成另一个表的Excel文件,只到当前服务器下所有表统计完毕,才开始统计另一个服务器

完整代码


需要修改的地方只有服务器地址、账号、密码,每一个服务器信息放一个元组中;如果有多个服务器用逗号隔开

import pymssql
import openpyxl as op
from openpyxl.styles import Font, Alignment, Side, Border
import os
class ErTransUtils():
def get_databases_name(self, cursor):
“”“获取服务器下所有库名”“”
sql = ‘SELECT * FROM sys.sysdatabases’
cursor.execute(sql)
rows = cursor.fetchall() # 逐行读取

存储

databases_name = []
for list in rows:
databases_name.append(list[0])

移除系统库和无用库

databases_name.remove(“master”)
databases_name.remove(“model”)
databases_name.remove(“msdb”)
databases_name.remove(“tempdb”)
try:
databases_name.remove(“ReportServer”)
databases_name.remove(“ReportServerTempDB”)
except Exception as e:
print(e)

print(databases_name)

return databases_name
def get_tables_name(self, databases_name, cursor):
“”“获取库中所有表名,并把对应的库名和表名存储在一起”“”
item1 = [] # 存储
for i in databases_name:
sql = f’SELECT * FROM [{i}].sys.tables’
cursor.execute(sql)
rows = cursor.fetchall() # 逐行读取
item = []
for j in rows:
item.append(j[0])
item.insert(0, i)
item1.append(tuple(item))
return item1
def save(self, item1, cursor, server_name):
“”“获取表中字段信息,并写入Excel”“”

根据服务器名称创建目录

os.makedirs(server_name)
databases_name:[‘master’, ‘tempdb’, ‘model’, ‘msdb’, ‘ReportServer’, ‘ReportServerTempDB’, ‘test’]

取出每个库名

for database in item1:

根据库名名称创建目录

database1 = f’./{server_name}/{database[0]}’
os.makedirs(database1)
print(‘正在统计%s库’ % database[0])


相关文章
|
2月前
|
弹性计算 安全 开发工具
灵码评测-阿里云提供的ECS python3 sdk做安全组管理
批量变更阿里云ECS安全组策略(批量变更)
|
3月前
|
缓存 监控 Linux
Python 实时获取Linux服务器信息
Python 实时获取Linux服务器信息
|
3月前
|
存储 关系型数据库 MySQL
查询服务器CPU、内存、磁盘、网络IO、队列、数据库占用空间等等信息
查询服务器CPU、内存、磁盘、网络IO、队列、数据库占用空间等等信息
1288 2
|
4月前
|
IDE 网络安全 开发工具
IDE之pycharm:专业版本连接远程服务器代码,并配置远程python环境解释器(亲测OK)。
本文介绍了如何在PyCharm专业版中连接远程服务器并配置远程Python环境解释器,以便在服务器上运行代码。
731 0
IDE之pycharm:专业版本连接远程服务器代码,并配置远程python环境解释器(亲测OK)。
|
3天前
|
存储 机器学习/深度学习 人工智能
2025年阿里云GPU服务器租用价格、选型策略与应用场景详解
随着AI与高性能计算需求的增长,阿里云提供了多种GPU实例,如NVIDIA V100、A10、T4等,适配不同场景。2025年重点实例中,V100实例GN6v单月3830元起,适合大规模训练;A10实例GN7i单月3213.99元起,适用于混合负载。计费模式有按量付费和包年包月,后者成本更低。针对AI训练、图形渲染及轻量级推理等场景,推荐不同配置以优化成本和性能。阿里云还提供抢占式实例、ESSD云盘等资源优化策略,支持eRDMA网络加速和倚天ARM架构,助力企业在2025年实现智能计算的效率与成本最优平衡。 (该简介为原文内容的高度概括,符合要求的字符限制。)
|
4天前
|
存储 弹性计算 人工智能
2025年阿里云企业云服务器ECS选购与配置全攻略
本文介绍了阿里云服务器的核心配置选择方法论,涵盖算力需求分析、网络与存储设计、地域部署策略三大维度。针对不同业务场景,如初创企业官网和AI模型训练平台,提供了具体配置方案。同时,详细讲解了购买操作指南及长期运维优化建议,帮助用户快速实现业务上云并确保高效运行。访问阿里云官方资源聚合平台可获取更多最新产品动态和技术支持。
|
6天前
|
弹性计算 JavaScript 前端开发
一键安装!阿里云新功能部署Nodejs环境到ECS竟然如此简单!
Node.js 是一种高效的 JavaScript 运行环境,基于 Chrome V8 引擎,支持在服务器端运行 JavaScript 代码。本文介绍如何在阿里云上一键部署 Node.js 环境,无需繁琐配置,轻松上手。前提条件包括 ECS 实例运行中且操作系统为 CentOS、Ubuntu 等。功能特点为一键安装和稳定性好,支持常用 LTS 版本。安装步骤简单:登录阿里云控制台,选择扩展程序管理页面,安装 Node.js 扩展,选择实例和版本,等待创建完成并验证安装成功。通过阿里云的公共扩展,初学者和经验丰富的开发者都能快速进入开发状态,开启高效开发之旅。
|
1月前
|
弹性计算 数据挖掘 应用服务中间件
阿里云轻量应用服务器68元与云服务器99元和199元区别及选择参考
目前阿里云有三款特惠云服务器,第一款轻量云服务器2核2G68元一年,第二款经济型云服务器2核2G3M带宽99元1年,第三款通用算力型2核4G5M带宽199元一年。有的新手用户并不是很清楚他们之间的区别,因此不知道如何选择。本文来介绍一下它们之间的区别以及选择参考。
523 87
|
8天前
|
弹性计算 JavaScript 前端开发
一键安装!阿里云新功能部署Nodejs环境到ECS竟然如此简单!
一键安装!阿里云新功能部署Nodejs环境到ECS竟然如此简单!
一键安装!阿里云新功能部署Nodejs环境到ECS竟然如此简单!
|
3天前
|
存储 人工智能 弹性计算
2025年阿里云企业高性能云服务器租用价格与选型详解
随着企业数字化转型,阿里云于2025年推出多款高性能云服务器实例,涵盖计算、通用和内存密集型场景。文章分析了企业选择云服务器的核心要点,包括明确业务需求(如计算密集型任务推荐计算型实例)、性能与架构升级(如第八代实例性能提升20%),以及第九代实例支持AI等高算力需求。同时提供了配置价格参考和成本优化策略,助力企业实现效率与成本的最优平衡。

热门文章

最新文章