实时计算 Flink版产品使用合集之如何使用CEP库进行数据处理

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。

问题一:Flink这种任务失败了,为什么还有1cu的任务在跑?


Flink这种任务失败了,为什么还有1cu的任务在跑?

job重启后,还多额外占用1cu的任务


参考回答:

Apache Flink 是一个分布式流处理和批处理系统,它通过检查点机制来实现容错性。当Flink任务失败时,这通常意味着在执行过程中遇到了某种问题,比如节点故障、网络问题或者程序错误等。

如果你看到有1CU的任务仍在运行,可能的原因包括:

  1. 部分恢复:Flink的容错机制使得它可以在出现故障时尝试恢复任务。如果只是部分任务失败,并且系统的其他部分仍然能够正常工作,那么整个任务可能不会完全停止,而是继续运行剩余的部分。这种情况下,你可能会看到仍有1CU的任务在运行。
  2. 资源分配:在一些集群管理器(如YARN或Kubernetes)中,一旦任务被提交并且分配了资源,即使任务本身已经失败,这些资源可能仍会被占用。这意味着虽然任务已经失败,但它们仍然显示为正在运行,因为从集群的角度来看,那些资源已经被分配出去了。
  3. 未正确关闭的任务:有时,由于各种原因(例如编程错误或异常),任务可能没有正确地关闭。在这种情况下,尽管任务已经不再执行任何有用的工作,但它可能仍然显示为活动状态。
  4. 监控延迟:你的监控工具可能存在一定的延迟,也就是说,实际的任务可能已经停止,但是监视界面还没有更新这个信息。
  5. JobManager内存调整导致的问题:之前的信息提到过,增大JobManager的内存可能导致任务失败和YARN宕机。这也可能是影响任务状态的一个因素。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/573862


问题二:在Flink像这种既要split 又要where的,where条件放在那里?


在Flink像这种既要split 又要where的,where条件放在那里?


参考回答:

在Flink中,如果您需要同时执行split和where操作,可以按照以下方式进行处理:

  1. 使用split()函数将流拆分为多个流。该函数接受一个OutputSelector参数,根据指定的条件将记录发送到不同的流中。例如:
DataStream<Integer> input = ...;
SplitStream<Integer> splitStream = input.split(new OutputSelector<Integer>() {
 @Override
 public Iterable<String> select(Integer value) {
     List<String> outputNames = new ArrayList<>();
     if (value % 2 == 0) {
         outputNames.add("even");
     } else {
         outputNames.add("odd");
     }
     return outputNames;
 }
});
  1. 在上面的示例中,根据输入整数值的奇偶性,我们将其拆分为"even"和"odd"两个流。
  2. 对拆分后的流应用filter()函数来实现where条件过滤。这将对每个流应用过滤器,只保留满足指定条件的记录。例如:
DataStream<Integer> evenStream = splitStream.select("even");
DataStream<Integer> filteredStream = evenStream.filter(value -> value > 10);


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/573860


问题三:flink 1.15 是否可以在 jdk1.8下运行么?还是必须用 jdk 11


flink 1.15 是否可以在 jdk1.8下运行么?还是必须用 jdk 11


参考回答:

可以,云上都还是。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/573859


问题四:在Flink用CEP的话需要怎么整理的呢?


在Flink用CEP的话需要怎么整理的呢?假设我有一组数据a1 a2 a3 a4 a5 a6 b

我想筛出来下面的这个样子

a1 a2

a1 a3

a1 a4

a1 a5

a1 a6

a1 b

或者

a1 a2

a1 a2 a3

a1 a2 a3 a4

a1 a2 a3 a4 a5

a1 a2 a3 a4 a5 a6

a1 a2 a3 a4 a5 a6 b


参考回答:

在Flink中使用CEP(Complex Event Processing)库来实现您的需求,您可以按照以下步骤进行整理:

  1. 首先,您需要将输入数据转换为Flink的DataStream对象。假设您的数据是一个字符串列表,可以通过fromCollection()方法将其转换为DataStream。例如:
List<String> input = Arrays.asList("a1", "a2", "a3", "a4", "a5", "a6", "b");
DataStream<String> dataStream = env.fromCollection(input);
  1. 接下来,您需要定义CEP模式并应用于数据流上。根据您的需求,有两种可能的模式。
    a) 要筛选出"a1"与后续记录的组合,您可以使用严格近邻模式(Strict Contiguity)。此模式要求事件按顺序连续出现。
Pattern<String, ?> pattern = Pattern.<String>begin("a1").followedByAny().where(new SimpleCondition<String>() {
    @Override
    public boolean filter(String value) {
        return !value.equals("b");
    }
});
  1. b) 要筛选出"a1"与后续记录的逐渐增长的组合,您可以使用宽松近邻模式(Relaxed Contiguity)。此模式允许事件之间存在间隔。
Pattern<String, ?> pattern = Pattern.<String>begin("a1").followedByAny(
    Pattern.<String>begin("a1").followedByAny().where(new SimpleCondition<String>() {
        @Override
        public boolean filter(String value) {
            return !value.equals("b");
        }
    })
);
  1. 应用CEP模式并提取匹配的结果。在Flink中,您可以使用CEP.pattern()方法将模式应用于数据流,并使用select()方法选择特定的结果。例如:
PatternStream<String> patternStream = CEP.pattern(dataStream, pattern);
DataStream<String> resultStream = patternStream.select((Map<String, List<String>> patternMatch) -> {
 StringBuilder sb = new StringBuilder();
 sb.append("a1");
 for (String key : patternMatch.keySet()) {
     sb.append(" ").append(key);
 }
 return sb.toString();
});


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/573858


问题五:相同的程序一个在云flink产品部署时Managed Memory打满,另一个几乎没有占用,为什么?


相同的两个程序一个在云flink产品上部署时 Managed Memory 直接打满,另一个在emr自建的yarn上跑 Managed Memory 几乎 没有占用,这是怎么回事?


参考回答:

managed memory 一启动Gemini就会把所有分配给它的managed都claim过去,所以这上面是看不出实际用量的。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/573857



相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
16天前
|
存储 分布式计算 流计算
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
682 10
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
|
12天前
|
SQL 运维 数据可视化
阿里云实时计算Flink版产品体验测评
阿里云实时计算Flink基于Apache Flink构建,提供一站式实时大数据分析平台,支持端到端亚秒级实时数据分析,适用于实时大屏、实时报表、实时ETL和风控监测等场景,具备高性价比、开发效率、运维管理和企业安全等优势。
zdl
|
4天前
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
21 0
|
29天前
|
数据可视化 大数据 数据处理
评测报告:实时计算Flink版产品体验
实时计算Flink版提供了丰富的文档和产品引导,帮助初学者快速上手。其强大的实时数据处理能力和多数据源支持,满足了大部分业务需求。但在高级功能、性能优化和用户界面方面仍有改进空间。建议增加更多自定义处理函数、数据可视化工具,并优化用户界面,增强社区互动,以提升整体用户体验和竞争力。
33 2
|
29天前
|
运维 搜索推荐 数据安全/隐私保护
阿里云实时计算Flink版测评报告
阿里云实时计算Flink版在用户行为分析与标签画像场景中表现出色,通过实时处理电商平台用户行为数据,生成用户兴趣偏好和标签,提升推荐系统效率。该服务具备高稳定性、低延迟、高吞吐量,支持按需计费,显著降低运维成本,提高开发效率。
66 1
|
1月前
|
运维 数据处理 Apache
数据实时计算产品对比测评报告:阿里云实时计算Flink版
数据实时计算产品对比测评报告:阿里云实时计算Flink版
|
30天前
|
运维 监控 Serverless
阿里云实时计算Flink版评测报告
阿里云实时计算Flink版是一款全托管的Serverless实时流处理服务,基于Apache Flink构建,提供企业级增值功能。本文从稳定性、性能、开发运维、安全性和成本效益等方面全面评测该产品,展示其在实时数据处理中的卓越表现和高投资回报率。
|
30天前
|
存储 运维 监控
实时计算Flink版在稳定性、性能、开发运维、安全能力等等跟其他引擎及自建Flink集群比较。
实时计算Flink版在稳定性、性能、开发运维和安全能力等方面表现出色。其自研的高性能状态存储引擎GeminiStateBackend显著提升了作业稳定性,状态管理优化使性能提升40%以上。核心性能较开源Flink提升2-3倍,资源利用率提高100%。提供一站式开发管理、自动化运维和丰富的监控告警功能,支持多语言开发和智能调优。安全方面,具备访问控制、高可用保障和全链路容错能力,确保企业级应用的安全与稳定。
38 0
|
2月前
|
运维 数据处理 数据安全/隐私保护
阿里云实时计算Flink版测评报告
该测评报告详细介绍了阿里云实时计算Flink版在用户行为分析与标签画像中的应用实践,展示了其毫秒级的数据处理能力和高效的开发流程。报告还全面评测了该服务在稳定性、性能、开发运维及安全性方面的卓越表现,并对比自建Flink集群的优势。最后,报告评估了其成本效益,强调了其灵活扩展性和高投资回报率,适合各类实时数据处理需求。
|
4月前
|
存储 监控 大数据
阿里云实时计算Flink在多行业的应用和实践
本文整理自 Flink Forward Asia 2023 中闭门会的分享。主要分享实时计算在各行业的应用实践,对回归实时计算的重点场景进行介绍以及企业如何使用实时计算技术,并且提供一些在技术架构上的参考建议。
821 7
阿里云实时计算Flink在多行业的应用和实践

相关产品

  • 实时计算 Flink版