Julia 复数和有理数
本章节我们主要要来学习 Julia 的复数和有理数。
Julia 语言包含了预定义的复数和有理数类型,并且支持它们的各种标准数学运算和初等函数。
复数
复数,为实数的延伸,它使任一多项式方程都有根。
我们把形如 z=a+bi(a、b均为实数)的数称为复数。其中,a 称为实部,b 称为虚部,i 称为虚数单位,它有着性质。当 z 的虚部 b=0 时,则 z 为实数;当 z 的虚部 b≠0 时,实部 a=0 时,常称 z 为纯虚数。
全局常量 im 被绑定到复数 i,表示 -1 的主平方根。
Julia 提供了一些操作复数的标准函数:
实例
julia> z = 1 + 2im
1 + 2im
julia> real(1 + 2im) # z 的实部
1
julia> imag(1 + 2im) # z 的虚部
2
julia> conj(1 + 2im) # z 的复共轭
1 - 2im
julia> abs(1 + 2im) # z 的绝对值
2.23606797749979
julia> abs2(1 + 2im) # 取平方后的绝对值
5
julia> angle(1 + 2im) # 以弧度为单位的相位角
1.1071487177940904
按照惯例,复数的绝对值(abs)是从零点到它的距离。abs2 给出绝对值的平方,作用于复数上时非常有用,因为它避免了取平方根。