基于STM32与FreeRTOS的四轴机械臂项目-1
https://developer.aliyun.com/article/1507996
三、裸机各种模块测试
硬件模块接线:
- 四个舵机分别接CH1_A15,CH2_B3,CH3_B10, CH4_B11
- 蓝牙模块TX接RX,RX接TX
- 两个按键摇杆传感器分别接 PA0 到 PA3 对应 IN0 到 IN3
- 四个旋钮电位器分别接 PA4 到 PA7 对应 IN4 到 IN7
- OLED模块 SCL 和 SDA 分别接 PB6 和 PB7
- W25Q128模块自行扩展
1.舵机模块
舵机模块测试可以看之前我写过的文章,链接如下:
注意舵机角度不能从0转到180度的话,很有可能是因为供电不够,SG90舵机额定电压为4.8~6V。
然后对四个舵机进行函数封装,舵机初始化角度跟运动角度自行配置调试:
//舵机A,夹爪 CH4_B11 45-135 张开闭合 初始化135 void sg90_A() { if(adc_dma[3] > 4000 && angle[3] < 135) { angle[3]++; } else if(adc_dma[3] <1000 && angle[3] > 45) { angle[3]--; } } //舵机B,上下 CH3_B10 45-180 初始化180 void sg90_B() { if(adc_dma[2] <1000 && angle[2] < 180) { angle[2]++; } else if(adc_dma[2] > 4000 && angle[2] > 45) { angle[2]--; } } //舵机C,前后 CH2_B3 45-180 前后 初始化45 void sg90_C() { if(adc_dma[1] <1000 && angle[1] < 180) { angle[1]++; } else if(adc_dma[1] > 4000 && angle[1] > 45) { angle[1]--; } } //舵机D,底座 CH1_A15 45-135 左到右 初始化45 void sg90_D() { if(adc_dma[0] <1000 && angle[0] < 135) { angle[0]++; } else if(adc_dma[0] > 4000 && angle[0] > 45) { angle[0]--; } } //开启4路PWM HAL_TIM_PWM_Start(&htim2, TIM_CHANNEL_1); HAL_TIM_PWM_Start(&htim2, TIM_CHANNEL_2); HAL_TIM_PWM_Start(&htim2, TIM_CHANNEL_3); HAL_TIM_PWM_Start(&htim2, TIM_CHANNEL_4);
2.蓝牙模块
可以使用HC-05(下图蓝色)或者HC-08(下图绿色),这两种我都测试通过。
有关蓝牙模块具体使用跟AT指令可以看以下两篇博客,链接如下:
使用串口中断测试收发的数据,串口重映射设置:
重映射代码:
int fputc(int ch, FILE *f) { unsigned char temp[1]={ch}; HAL_UART_Transmit(&huart1,temp,1,0xffff); return ch; }
中断接收信息代码:
// 接收完成回调函数,收到一个数据后,在这里处理 void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart) { // 判断中断是由哪个串口触发的 if(huart->Instance == USART1) { // 判断接收是否完成(UART1_RX_STA bit15 位是否为1) if((UART1_RX_STA & 0x8000) == 0) { // 如果已经收到了 0x0d (回车), if(UART1_RX_STA & 0x4000) { // 则接着判断是否收到 0x0a (换行) if(buf == 0x0a) // 如果 0x0a 和 0x0d 都收到,则将 bit15 位置为1 UART1_RX_STA |= 0x8000; else // 否则认为接收错误,重新开始 UART1_RX_STA = 0; } else // 如果没有收到了 0x0d (回车) { //则先判断收到的这个字符是否是 0x0d (回车) if(buf == 0x0d) { // 是的话则将 bit14 位置为1 UART1_RX_STA |= 0x4000; } else { // 否则将接收到的数据保存在缓存数组里 UART1_RX_Buffer[UART1_RX_STA & 0X3FFF] = buf; UART1_RX_STA++; // 如果接收数据大于UART1_REC_LEN(200字节),则重新开始接收 if(UART1_RX_STA > UART1_REC_LEN - 1) UART1_RX_STA = 0; } } } // 重新开启中断 HAL_UART_Receive_IT(&huart1, &buf, 1); } }
在main.c函数中开启中断测试,然后打开蓝牙助手:
// 开启接收中断 HAL_UART_Receive_IT(&huart1, &buf, 1); while (1) { //判断判断串口是否接收完成 if(UART1_RX_STA & 0x8000) { if(!strcmp((const char *)UART1_RX_Buffer, "open")) { printf("张爪\r\n"); } else if (!strcmp((const char *)UART1_RX_Buffer, "close")) { printf("夹爪\r\n"); } else { if(UART1_RX_Buffer[0] != '\0') printf("指令发送错误:%s\r\n", UART1_RX_Buffer); } printf("\r\n"); // 重新开始下一次接收 UART1_RX_STA = 0; } HAL_Delay(40); }
手机打开蓝牙助手,记得把发送新行勾上,不然中断接收不到数据
3.按键摇杆传感器模块和旋钮电位器模块
这里用两个按键摇杆传感器分别接收 IN0~3 ADC的模拟量,用四个旋钮电位器分别接收 IN4~7 ADC的模拟量
利用DMA传输接收到的ADC的值通过串口打印进行调试,通过按钮和电位器控制角度
代码示例:
uint16_t adc_dma[8];//DMA搬运的ADC采集值 uint8_t angle[4] = {45,45,180,135};//舵机角度 uint8_t cnt = 0;//计数用,定时串口打印信息 //根据输入的0~180角度获取对应pwm占空比参数 uint8_t Angle(uint8_t pwm_pulse) { return pwm_pulse + 44; } //开始ADC和DMA采集 HAL_ADC_Start_DMA(&hadc1,(uint32_t *)adc_dma,8); while (1) { sg90_A(); sg90_B(); sg90_C(); sg90_D(); //输出PWM波使舵机运动 __HAL_TIM_SetCompare(&htim2, TIM_CHANNEL_1, Angle(angle[0])); __HAL_TIM_SetCompare(&htim2, TIM_CHANNEL_2, Angle(angle[1])); __HAL_TIM_SetCompare(&htim2, TIM_CHANNEL_3, Angle(angle[2])); __HAL_TIM_SetCompare(&htim2, TIM_CHANNEL_4, Angle(angle[3])); cnt++;//计数,每循环一次+1 if(cnt>= 50)//循环50次,每次20ms,即一共1s。每一秒发送一次数据 { printf("Angle = {%d, %d, %d, %d}\r\n",angle[0],angle[1],angle[2],angle[3]); printf("adc_dma = {%d, %d, %d, %d, %d, %d, %d, %d}\r\n",adc_dma[0],adc_dma[1],adc_dma[2],adc_dma[3],adc_dma[4],adc_dma[5],adc_dma[6],adc_dma[7]); cnt = 0; } HAL_Delay(20);//每20ms循环一次 }
4.OLED模块
在这里我们可以用取模软件显示机械臂动作,张爪夹爪,向左向右,向前向后,向上向下,也可以后续自行扩展其他内容,例如角度和控制模式等。
oled介绍可看我之前写过的:OLED取模生成文字图片
代码实现如下:
/*-- 文字: 向 --*/ /*-- 宋体12; 此字体下对应的点阵为:宽x高=16x16 --*/ char x1[16] = {0x00,0xF8,0x08,0x08,0x0C,0xCA,0x49,0x48,0x48,0xC8,0x08,0x08,0x08,0xF8,0x00,0x00}; char x2[16] = {0x00,0xFF,0x00,0x00,0x00,0x1F,0x08,0x08,0x08,0x1F,0x00,0x40,0x80,0x7F,0x00,0x00}; /*-- 文字: 前 --*/ /*-- 宋体12; 此字体下对应的点阵为:宽x高=16x16 --*/ char f1[16] = {0x08,0x08,0xE8,0x29,0x2E,0x28,0xE8,0x08,0x08,0xC8,0x0C,0x0B,0xE8,0x08,0x08,0x00}; char f2[16] = {0x00,0x00,0xFF,0x09,0x49,0x89,0x7F,0x00,0x00,0x0F,0x40,0x80,0x7F,0x00,0x00,0x00}; /*-- 文字: 后 --*/ /*-- 宋体12; 此字体下对应的点阵为:宽x高=16x16 --*/ char b1[16] = {0x00,0x00,0x00,0xFC,0x24,0x24,0x24,0x24,0x22,0x22,0x22,0x23,0x22,0x20,0x20,0x00}; char b2[16] = {0x40,0x20,0x18,0x07,0x00,0xFE,0x42,0x42,0x42,0x42,0x42,0x42,0xFE,0x00,0x00,0x00}; /*-- 文字: 上 --*/ /*-- 宋体12; 此字体下对应的点阵为:宽x高=16x16 --*/ char u1[16] = {0x00,0x00,0x00,0x00,0x00,0x00,0xFF,0x40,0x40,0x40,0x40,0x40,0x40,0x00,0x00,0x00}; char u2[16] = {0x40,0x40,0x40,0x40,0x40,0x40,0x7F,0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x00}; /*-- 文字: 下 --*/ /*-- 宋体12; 此字体下对应的点阵为:宽x高=16x16 --*/ char d1[16] = {0x02,0x02,0x02,0x02,0x02,0x02,0xFE,0x02,0x02,0x42,0x82,0x02,0x02,0x02,0x02,0x00}; char d2[16] = {0x00,0x00,0x00,0x00,0x00,0x00,0xFF,0x00,0x00,0x00,0x00,0x01,0x06,0x00,0x00,0x00}; /*-- 文字: 左 --*/ /*-- 宋体12; 此字体下对应的点阵为:宽x高=16x16 --*/ char l1[16] = {0x08,0x08,0x08,0x08,0x88,0x78,0x0F,0x08,0x08,0x08,0x08,0x08,0x08,0x08,0x08,0x00}; char l2[16] = {0x20,0x10,0x48,0x46,0x41,0x41,0x41,0x41,0x7F,0x41,0x41,0x41,0x41,0x40,0x40,0x00}; /*-- 文字: 右 --*/ /*-- 宋体12; 此字体下对应的点阵为:宽x高=16x16 --*/ char r1[16] = {0x08,0x08,0x08,0x08,0xC8,0x38,0x0F,0x08,0x08,0x08,0x08,0x08,0x08,0x08,0x08,0x00}; char r2[16] = {0x08,0x04,0x02,0x01,0xFF,0x41,0x41,0x41,0x41,0x41,0x41,0x41,0xFF,0x00,0x00,0x00}; /*-- 文字: 张 --*/ /*-- 宋体12; 此字体下对应的点阵为:宽x高=16x16 --*/ char o1[16] = {0x02,0xE2,0x22,0x22,0x3E,0x80,0x80,0xFF,0x80,0xA0,0x90,0x88,0x86,0x80,0x80,0x00}; char o2[16] = {0x00,0x43,0x82,0x42,0x3E,0x00,0x00,0xFF,0x40,0x21,0x06,0x08,0x10,0x20,0x40,0x00}; /*-- 文字: 夹 --*/ /*-- 宋体12; 此字体下对应的点阵为:宽x高=16x16 --*/ char c1[16] = {0x00,0x08,0x08,0x28,0x48,0x08,0x08,0xFF,0x08,0x08,0x48,0x28,0x08,0x08,0x00,0x00}; char c2[16] = {0x81,0x81,0x41,0x41,0x21,0x11,0x0D,0x03,0x0D,0x11,0x21,0x41,0x41,0x81,0x81,0x00}; /*-- 文字: 爪 --*/ /*-- 宋体12; 此字体下对应的点阵为:宽x高=16x16 --*/ char z1[16] = {0x00,0x00,0x00,0xFC,0x04,0x04,0xFC,0x04,0x02,0x02,0xFE,0x03,0x02,0x00,0x00,0x00}; char z2[16] = {0x80,0x60,0x18,0x07,0x00,0x00,0x7F,0x00,0x00,0x00,0x01,0x0E,0x30,0x40,0x80,0x00}; void Oled_Write_Cmd(uint8_t dataCmd) { HAL_I2C_Mem_Write(&hi2c1, 0x78, 0x00, I2C_MEMADD_SIZE_8BIT, &dataCmd, 1, 0xff); } void Oled_Write_Data(uint8_t dataData) { HAL_I2C_Mem_Write(&hi2c1, 0x78, 0x40, I2C_MEMADD_SIZE_8BIT, &dataData, 1, 0xff); } void Oled_Init(void){ Oled_Write_Cmd(0xAE);//--display off Oled_Write_Cmd(0x00);//---set low column address Oled_Write_Cmd(0x10);//---set high column address Oled_Write_Cmd(0x40);//--set start line address Oled_Write_Cmd(0xB0);//--set page address Oled_Write_Cmd(0x81); // contract control Oled_Write_Cmd(0xFF);//--128 Oled_Write_Cmd(0xA1);//set segment remap Oled_Write_Cmd(0xA6);//--normal / reverse Oled_Write_Cmd(0xA8);//--set multiplex ratio(1 to 64) Oled_Write_Cmd(0x3F);//--1/32 duty Oled_Write_Cmd(0xC8);//Com scan direction Oled_Write_Cmd(0xD3);//-set display offset Oled_Write_Cmd(0x00);// Oled_Write_Cmd(0xD5);//set osc division Oled_Write_Cmd(0x80);// Oled_Write_Cmd(0xD8);//set area color mode off Oled_Write_Cmd(0x05);// Oled_Write_Cmd(0xD9);//Set Pre-Charge Period Oled_Write_Cmd(0xF1);// Oled_Write_Cmd(0xDA);//set com pin configuartion Oled_Write_Cmd(0x12);// Oled_Write_Cmd(0xDB);//set Vcomh Oled_Write_Cmd(0x30);// Oled_Write_Cmd(0x8D);//set charge pump enable Oled_Write_Cmd(0x14);// Oled_Write_Cmd(0xAF);//--turn on oled panel } void Oled_Screen_Clear(void){ unsigned char i,n; Oled_Write_Cmd (0x20); //set memory addressing mode Oled_Write_Cmd (0x02); //page addressing mode for(i=0;i<8;i++){ Oled_Write_Cmd(0xb0+i); // Oled_Write_Cmd(0x00); // Oled_Write_Cmd(0x10); // for(n=0;n<128;n++)Oled_Write_Data(0x00); } } void Oled_Show_open() { unsigned char i; Oled_Init(); // 选择一个位置确认页寻址模式 Oled_Write_Cmd(0x20); Oled_Write_Cmd(0x02); Oled_Screen_Clear(); // 选择PAGE0 1011 0000 0xB0 Oled_Write_Cmd(0xB0); Oled_Write_Cmd(0x00); Oled_Write_Cmd(0x10); for(i=0;i<16;i++){ Oled_Write_Data(o1[i]); } for(i=0;i<16;i++){ Oled_Write_Data(z1[i]); } Oled_Write_Cmd(0xB1); Oled_Write_Cmd(0x00); Oled_Write_Cmd(0x10); for(i=0;i<16;i++){ Oled_Write_Data(o2[i]); } for(i=0;i<16;i++){ Oled_Write_Data(z2[i]); } } void Oled_Show_close() { unsigned char i; Oled_Init(); Oled_Write_Cmd(0x20); Oled_Write_Cmd(0x02); Oled_Screen_Clear(); Oled_Write_Cmd(0xB0); Oled_Write_Cmd(0x00); Oled_Write_Cmd(0x10); for(i=0;i<16;i++){ Oled_Write_Data(c1[i]); } for(i=0;i<16;i++){ Oled_Write_Data(z1[i]); } Oled_Write_Cmd(0xB1); Oled_Write_Cmd(0x00); Oled_Write_Cmd(0x10); for(i=0;i<16;i++){ Oled_Write_Data(c2[i]); } for(i=0;i<16;i++){ Oled_Write_Data(z2[i]); } } void Oled_Show_up() { unsigned char i; Oled_Init(); Oled_Write_Cmd(0x20); Oled_Write_Cmd(0x02); Oled_Screen_Clear(); Oled_Write_Cmd(0xB0); Oled_Write_Cmd(0x00); Oled_Write_Cmd(0x10); for(i=0;i<16;i++){ Oled_Write_Data(x1[i]); } for(i=0;i<16;i++){ Oled_Write_Data(u1[i]); } Oled_Write_Cmd(0xB1); Oled_Write_Cmd(0x00); Oled_Write_Cmd(0x10); for(i=0;i<16;i++){ Oled_Write_Data(x2[i]); } for(i=0;i<16;i++){ Oled_Write_Data(u2[i]); } } void Oled_Show_down() { unsigned char i; Oled_Init(); Oled_Write_Cmd(0x20); Oled_Write_Cmd(0x02); Oled_Screen_Clear(); Oled_Write_Cmd(0xB0); Oled_Write_Cmd(0x00); Oled_Write_Cmd(0x10); for(i=0;i<16;i++){ Oled_Write_Data(x1[i]); } for(i=0;i<16;i++){ Oled_Write_Data(d1[i]); } Oled_Write_Cmd(0xB1); Oled_Write_Cmd(0x00); Oled_Write_Cmd(0x10); for(i=0;i<16;i++){ Oled_Write_Data(x2[i]); } for(i=0;i<16;i++){ Oled_Write_Data(d2[i]); } } void Oled_Show_left() { unsigned char i; Oled_Init(); Oled_Write_Cmd(0x20); Oled_Write_Cmd(0x02); Oled_Screen_Clear(); Oled_Write_Cmd(0xB0); Oled_Write_Cmd(0x00); Oled_Write_Cmd(0x10); for(i=0;i<16;i++){ Oled_Write_Data(x1[i]); } for(i=0;i<16;i++){ Oled_Write_Data(l1[i]); } Oled_Write_Cmd(0xB1); Oled_Write_Cmd(0x00); Oled_Write_Cmd(0x10); for(i=0;i<16;i++){ Oled_Write_Data(x2[i]); } for(i=0;i<16;i++){ Oled_Write_Data(l2[i]); } } void Oled_Show_right() { unsigned char i; Oled_Init(); Oled_Write_Cmd(0x20); Oled_Write_Cmd(0x02); Oled_Screen_Clear(); Oled_Write_Cmd(0xB0); Oled_Write_Cmd(0x00); Oled_Write_Cmd(0x10); for(i=0;i<16;i++){ Oled_Write_Data(x1[i]); } for(i=0;i<16;i++){ Oled_Write_Data(r1[i]); } Oled_Write_Cmd(0xB1); Oled_Write_Cmd(0x00); Oled_Write_Cmd(0x10); for(i=0;i<16;i++){ Oled_Write_Data(x2[i]); } for(i=0;i<16;i++){ Oled_Write_Data(r2[i]); } } void Oled_Show_front() { unsigned char i; Oled_Init(); Oled_Write_Cmd(0x20); Oled_Write_Cmd(0x02); Oled_Screen_Clear(); Oled_Write_Cmd(0xB0); Oled_Write_Cmd(0x00); Oled_Write_Cmd(0x10); for(i=0;i<16;i++){ Oled_Write_Data(x1[i]); } for(i=0;i<16;i++){ Oled_Write_Data(f1[i]); } Oled_Write_Cmd(0xB1); Oled_Write_Cmd(0x00); Oled_Write_Cmd(0x10); for(i=0;i<16;i++){ Oled_Write_Data(x2[i]); } for(i=0;i<16;i++){ Oled_Write_Data(f2[i]); } } void Oled_Show_behind() { unsigned char i; Oled_Init(); Oled_Write_Cmd(0x20); Oled_Write_Cmd(0x02); Oled_Screen_Clear(); Oled_Write_Cmd(0xB0); Oled_Write_Cmd(0x00); Oled_Write_Cmd(0x10); for(i=0;i<16;i++){ Oled_Write_Data(x1[i]); } for(i=0;i<16;i++){ Oled_Write_Data(b1[i]); } Oled_Write_Cmd(0xB1); Oled_Write_Cmd(0x00); Oled_Write_Cmd(0x10); for(i=0;i<16;i++){ Oled_Write_Data(x2[i]); } for(i=0;i<16;i++){ Oled_Write_Data(b2[i]); } } while (1) { Oled_Show_open(); HAL_Delay(1000); Oled_Show_close(); HAL_Delay(1000); Oled_Show_up(); HAL_Delay(1000); Oled_Show_down(); HAL_Delay(1000); Oled_Show_left(); HAL_Delay(1000); Oled_Show_right(); HAL_Delay(1000); Oled_Show_front(); HAL_Delay(1000); Oled_Show_behind(); HAL_Delay(1000); }
5.W25Q128模块
W25Q128模块测试可看我之前写过的文章然后自行扩展:W25Q128模块测试
基于STM32与FreeRTOS的四轴机械臂项目-3