pytorch主流backbone实现

简介: pytorch主流backbone实现
相关文章
|
TensorFlow 算法框架/工具 计算机视觉
ResNet实战:tensorflow2.0以上版本,使用ResNet50实现图像分类任务
ResNet实战:tensorflow2.0以上版本,使用ResNet50实现图像分类任务
888 0
|
人工智能 TensorFlow 算法框架/工具
MobileNet V1官方预训练模型的使用
MobileNet V1官方预训练模型的使用
MobileNet V1官方预训练模型的使用
|
机器学习/深度学习 存储 PyTorch
使用PyTorch Lightning构建轻量化强化学习DQN(附完整源码)(二)
使用PyTorch Lightning构建轻量化强化学习DQN(附完整源码)(二)
538 0
使用PyTorch Lightning构建轻量化强化学习DQN(附完整源码)(二)
|
存储 机器学习/深度学习 PyTorch
使用PyTorch Lightning构建轻量化强化学习DQN(附完整源码)(一)
使用PyTorch Lightning构建轻量化强化学习DQN(附完整源码)(一)
312 0
使用PyTorch Lightning构建轻量化强化学习DQN(附完整源码)(一)
|
人工智能 算法 Ubuntu
MobileNet实战:tensorflow2.X版本,MobileNetV2图像分类任务(大数据集)
本例提取了植物幼苗数据集中的部分数据做数据集,数据集共有12种类别,今天我和大家一起实现tensorflow2.X版本图像分类任务,分类的模型使用MobileNetV2。本文实现的算法有一下几个特点: 1、自定义了图片加载方式,更加灵活高效,不用将图片一次性加载到内存中,节省内存,适合大规模数据集。 2、加载模型的预训练权重,训练时间更短。 3、数据增强选用albumentations。
273 0
MobileNet实战:tensorflow2.X版本,MobileNetV2图像分类任务(大数据集)
|
Ubuntu TensorFlow 算法框架/工具
MobileNet实战:tensorflow2.X版本,MobileNetV2图像分类任务(小数据集)
本例提取了植物幼苗数据集中的部分数据做数据集,数据集共有12种类别,今天我和大家一起实现tensorflow2.X版本图像分类任务,分类的模型使用MobileNetV2,MobileNetV2在MobileNetV1的基础上增加了线性瓶颈(Linear Bottleneck)和倒残差(Inverted Residual)是一种轻量级的网络,适合应用在真实的移动端应用场景。
431 0
MobileNet实战:tensorflow2.X版本,MobileNetV2图像分类任务(小数据集)
|
人工智能 算法 Ubuntu
MobileNet实战:tensorflow2.X版本,MobileNetV1图像分类任务(大数据集)
本例提取了植物幼苗数据集中的部分数据做数据集,数据集共有12种类别,今天我和大家一起实现tensorflow2.X版本图像分类任务,分类的模型使用MobileNetV1。本文实现的算法有一下几个特点: 1、自定义了图片加载方式,更加灵活高效,不用将图片一次性加载到内存中,节省内存,适合大规模数据集。 2、加载模型的预训练权重,训练时间更短。 3、数据增强选用albumentations。
190 0
MobileNet实战:tensorflow2.X版本,MobileNetV1图像分类任务(大数据集)
|
机器学习/深度学习 数据挖掘 PyTorch
|
Ubuntu TensorFlow 算法框架/工具
MobileNet实战:tensorflow2.X版本,MobileNetV1图像分类任务(小数据集)
本例提取了植物幼苗数据集中的部分数据做数据集,数据集共有12种类别,今天我和大家一起实现tensorflow2.X版本图像分类任务,分类的模型使用MobileNet,其核心是采用了深度可分离卷积,其不仅可以降低模型计算复杂度,而且可以大大降低模型大小,本文使用的案例训练出来的模型只有38M,适合应用在真实的移动端应用场景。
271 0
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch学习系列教程:深度神经网络【DNN】
趁着清明小假期,决定继续输出几篇文章。对于PyTorch学习教程系列,有了前几篇推文做铺垫,这次打算用三篇文章分别介绍一下深度学习中的三大基石:DNN、CNN、RNN。本文就从DNN开始,即深度神经网络。 本文建议结合历史推文《PyTorch学习系列教程:Tensor如何实现自动求导》配套阅读。
774 0
PyTorch学习系列教程:深度神经网络【DNN】

热门文章

最新文章