【斯坦福计网CS144项目】Lab2 实现一个简单的 TCP 接收类

简介: 【斯坦福计网CS144项目】Lab2 实现一个简单的 TCP 接收类

😘欢迎关注:👍点赞🙌收藏✍️留言

🏇码字不易,你的👍点赞🙌收藏❤️关注对我真的很重要,有问题可在评论区提出,感谢支持!!!

一、实验目的

1 实现一个简单的 TCP 接收类

2 对 TCP 数据传输有更深的理解

二、实验说明

  1. 我们在lab0中实现了字节流(ByteStream)的流控制抽象化。随后,在lab1中,我们创建了一个名为StreamReassembler的结构体,它可以接收同一字节流的子字符串序列,并将它们重新组装到原始流中。
  2. 尽管这些模块已经能够满足实验要求,但它们并没有涵盖TCP传输控制协议的细节。因此,在lab2中,我们打算实现一个名为TCPReceiver的模块,其主要功能是处理传入字节流的数据。换句话说,它能够正确读取IP数据报中所携带的信息。
  3. TCPReceiver将具备以下能力:对于正确接收且按序到达的数据报,它能够向发送方发送确认号,发送方可以根据此确认号来调整自身的发送行为。此外,TCPReceiver还能够告知发送方自身的接收窗口大小,以便发送方相应地进行发送调整。

三、实验内容

  1. 拉取lab2的代码,合并到当前目录中,然后在build目录下输入“make”对代码进行编译,结果无误开始下一步编写代码。
  2. 这次实验需要编写的文件如下图3-1所示。

图3-1 需要编写的文件

  1. 使用vscode远程连接虚拟机,可以很方便的编写代码,下面都是在vscode编辑器下进行。
  2. 实现在64位索引和32位序列号之间转换,编写"wrapping_integers.cc""wrapping_integers.hh"文件如图3-2、3-3所示。源代码见附录。

图 3-2 wrapping_integers.cc

图 3-3 wrapping_integers.hh

  1. 实现TCP接收器,编写tcp_receiver.cc tcp_receiver.hh文件如图3-4、3-5所示。源代码见附录。

图 3-4 tcp_receiver.cc

图3-5 tcp_receiver.hh

  1. 在build 目录下输入命令"make check2" 对lab2进行检查,结果如3-6所示,可以看到所有的测试样例全部通过。

图3-6 测试结果

四、实验体会

在本次实验中,我们实现了一个简单的TCP接收类。通过这个实验,我对TCP数据传输有了更深的理解,并学会了如何处理传入字节流的数据。

在实验过程中,我们创建了几个关键的模块来实现TCP接收类的功能。首先,在lab0中,我们实现了字节流的流控制抽象化,以便后续的操作。然后,在lab1中,我们创建了一个名为StreamReassembler的结构体,它可以接收同一字节流的子字符串序列,并将它们重新组装到原始流中。虽然这些模块已经能够满足实验要求,但它们并没有涵盖TCP传输控制协议的细节。

因此,在lab2中,我们打算实现一个名为TCPReceiver的模块,它的主要功能是处理传入字节流的数据。具体而言,TCPReceiver具备以下能力:

  1. 对于正确接收且按序到达的数据报,它能够向发送方发送确认号,发送方可以根据此确认号来调整自身的发送行为。
  2. TCPReceiver还能够告知发送方自身的接收窗口大小,以便发送方相应地进行发送调整。

在实现TCPReceiver模块的过程中,我们使用了Wrap32类来处理32位无符号整数的包装和解包装操作。Wrap32类具有一个起始值(zero point),当整数达到2^32 - 1时会重新回到起始值,实现循环计数的功能。

通过实现TCPReceiver模块,我们可以根据接收到的数据报的序列号(seqno)来处理数据,并将其插入到Reassembler中的正确流索引位置。同时,我们还可以根据已经接收到的数据量来确定应该发送的确认号(ackno)以及接收窗口大小(window size)。

总的来说,通过完成这个实验,我对TCP数据传输有了更深入的理解,特别是在处理接收端的数据时。我学会了如何使用TCPReceiver来处理传入字节流,并与发送方进行正确的数据交互。这个实验提供了一个很好的实践机会,使我更加熟悉TCP协议的工作原理和相关概念。

五、代码附录

  1. wrapping_integers.hh
#pragma once

#include <cstdint>

/*
 * The Wrap32 type represents a 32-bit unsigned integer that:
 *    - starts at an arbitrary "zero point" (initial value), and
 *    - wraps back to zero when it reaches 2^32 - 1.
 */

class Wrap32
{
protected:
  uint32_t raw_value_ {};

public:
  explicit Wrap32( uint32_t raw_value ) : raw_value_( raw_value ) {}

  /* Construct a Wrap32 given an absolute sequence number n and the zero point. */
  static Wrap32 wrap( uint64_t n, Wrap32 zero_point );

  /*
   * The unwrap method returns an absolute sequence number that wraps to this Wrap32, given the zero point
   * and a "checkpoint": another absolute sequence number near the desired answer.
   *
   * There are many possible absolute sequence numbers that all wrap to the same Wrap32.
   * The unwrap method should return the one that is closest to the checkpoint.
   */
  uint64_t unwrap( Wrap32 zero_point, uint64_t checkpoint ) const;

  Wrap32 operator+( uint32_t n ) const { return Wrap32 { raw_value_ + n }; }
  bool operator==( const Wrap32& other ) const { return raw_value_ == other.raw_value_; }
};
  1. wrapping_integers.cc
#include "wrapping_integers.hh"

using namespace std;


Wrap32 Wrap32::wrap( uint64_t n, Wrap32 zero_point )
{
  // Your code here.
  // 当模是进制数的倍数时,取模就等效与截断,例如十进制:123 % 100,直接截断前面,保留最后两位得到23
  // 因此这里uint64_t n直接强转成uint32_t,截断前面32位,只保留低32位,等效于%2^32
  Wrap32 seqno( zero_point + static_cast<uint32_t>( n ) );
  (void)n;
  (void)zero_point;
  return seqno;
}
// seqno -> absolute seqno
uint64_t Wrap32::unwrap( Wrap32 zero_point, uint64_t checkpoint ) const
{
  // Your code here.
  uint64_t abs_seqno = static_cast<uint64_t>( this->raw_value_ - zero_point.raw_value_ );
  // 现在的abs_seqno是mod之后的值,还需要把它还原回mod之前的
  // 由于还原之后的abs_seqno需要离checkpoint最近,因此先找出checkpoint前后的两个可还原的abs_seqno,那个近选哪个就好
  // checkpoint / 2^32得到商,也即mod 2^32的次数
  uint64_t times_mod = checkpoint >> 32; // >>32等价于除以2^32
  // mod 2^32的余数,<<32实现截断前面32位,>>32实现保留低32位
  uint64_t remain = checkpoint << 32 >> 32; // 总体等效于%2^32,
  uint64_t bound;
  // 先取得离checkpoint最近的边界的mod次数(times_mod是左边界mod次数)
  if ( remain < 1UL << 31 ) // remain属于[0,2^32-1],mid=2^31(即1UL << 31)
    bound = times_mod;
  else
    bound = times_mod + 1;
  // 以该边界的左右边界作为base,还原出2个mod之前的abs_seqno值
  // <<32等价于乘上2^32
  uint64_t abs_seqno_l = abs_seqno + ( ( bound == 0 ? 0 : bound - 1 ) << 32 ); // 注意bound=0的特殊情况
  uint64_t abs_seqno_r = abs_seqno + ( bound << 32 );
  // 判断checkpoint离哪个abs_seqno值近就取那个
  if ( checkpoint < ( abs_seqno_l + abs_seqno_r ) / 2 )
    abs_seqno = abs_seqno_l;
  else
    abs_seqno = abs_seqno_r;
  (void)zero_point;
  (void)checkpoint;
  return abs_seqno;
}
  1. tcp_receiver.hh
#pragma once

#include "reassembler.hh"
#include "tcp_receiver_message.hh"
#include "tcp_sender_message.hh"


class TCPReceiver
{
public:
  TCPReceiver() : isn( 0 ), fin( 0 ), is_isn_set( 0 ), is_last_substring( 0 ) {}
  /*
   * The TCPReceiver receives TCPSenderMessages, inserting their payload into the Reassembler
   * at the correct stream index.
   */
  void receive( TCPSenderMessage message, Reassembler& reassembler, Writer& inbound_stream );
  /* The TCPReceiver sends TCPReceiverMessages back to the TCPSender. */
  TCPReceiverMessage send( const Writer& inbound_stream ) const;
private:
  Wrap32 isn;             // 记录流的ISN位置
  Wrap32 fin;             // 记录流的FIN位置
  bool is_isn_set;        // 标记ISN是否被设置了
  bool is_last_substring; // 标记是否到达流的末尾
};
  1. tcp_receiver.cc
#include "tcp_receiver.hh"

using namespace std;

void TCPReceiver::receive( TCPSenderMessage message, Reassembler& reassembler, Writer& inbound_stream )
{
  // 当设置了SYN标志时,记录ISN,标记is_isn_set,此标记一旦设置就一直有效
  if ( message.SYN == true ) {
    isn = Wrap32( message.seqno );
    is_isn_set = true;
    message.seqno = message.seqno + 1; // 此时seqno指向ISN,因此需要重定向为有效载荷的第一个字符
  }
  // 当设置FIN标志时,记录FIN,标记is_last_substring,这只针对一个数据,因此没有FIN标志时,要移除is_last_substring标记
  if ( message.FIN == true ) {
    is_last_substring = true;
    fin = Wrap32( message.seqno + message.payload.size() );
  } else
    is_last_substring = false;
  // 把数据送进reassembler,first_index需要转换
  // first_index = absolute seqno - 1 , absolute seqno = seqno.unwrap
  // unwrap时的checkpoint使用_first_unassembled_index = Writer.bytes_pushed()
  if ( is_isn_set == true ) // ISN被设置后才能转换seqno,因此ISN没设置之前不能push
    reassembler.insert( message.seqno.unwrap( isn, inbound_stream.bytes_pushed() ) - 1,
                        message.payload,
                        is_last_substring,
                        inbound_stream );
  (void)reassembler;
  (void)inbound_stream;
}
TCPReceiverMessage TCPReceiver::send( const Writer& inbound_stream ) const
{
  TCPReceiverMessage tcpReceiverMessage;
  // 当ISN被设置之后,才设置ackno
  Wrap32 ackno
    = Wrap32::wrap( inbound_stream.bytes_pushed() + 1, isn ); // _first_unassembled_index先+1转成abs seqno,再wrap
  if ( is_isn_set == true )
    tcpReceiverMessage.ackno = ackno == fin ? ackno + 1 : ackno; // 特殊情况,ackno需要越过FIN
  tcpReceiverMessage.window_size
    = inbound_stream.available_capacity() > UINT16_MAX ? UINT16_MAX : inbound_stream.available_capacity(); // window_size的上限是UINT16_MAX
  (void)inbound_stream;
  return tcpReceiverMessage;
}

相关文章
|
23天前
|
存储 网络协议 Linux
【斯坦福计网CS144项目】Lab1 实现一个流重组器
【斯坦福计网CS144项目】Lab1 实现一个流重组器
12 0
|
23天前
|
网络协议 安全 网络安全
【斯坦福计网CS144】Lab7终结笔记
【斯坦福计网CS144】Lab7终结笔记
50 0
|
23天前
|
缓存 网络协议 开发工具
【斯坦福计网CS144】Lab1终结笔记
【斯坦福计网CS144】Lab1终结笔记
69 0
|
23天前
|
网络协议 开发工具 git
【斯坦福计网CS144】Lab4终结笔记
【斯坦福计网CS144】Lab4终结笔记
25 0
|
23天前
|
存储 网络协议 算法
【斯坦福计网CS144】Lab3终结笔记
【斯坦福计网CS144】Lab3终结笔记
25 0
|
23天前
|
网络协议 开发工具 网络架构
【斯坦福计网CS144】Lab2终结笔记
【斯坦福计网CS144】Lab2终结笔记
42 0
|
23天前
|
缓存 网络协议 开发工具
【斯坦福计网CS144】Lab0终结笔记
【斯坦福计网CS144】Lab0终结笔记
58 0
|
网络协议 算法 Linux
《TCP IP 详解卷1:协议》阅读笔记 - 第十四章
阅读须知:笔记为阅读《TCP IP 详解卷1:协议》后摘抄的一些知识点,其间也有加入一些根据英文原版的自己翻译和结合网上知识后的理解,所以有些段落之间并不能够串联上或者知识点与书上略有差别(基本差别不大,参考的资料属RFC官方文档)。
1655 0
|
网络协议 网络架构
《TCP IP 详解卷1:协议》阅读笔记 - 第九章
阅读须知:笔记为阅读《TCP IP 详解卷1:协议》后摘抄的一些知识点,其间也有加入一些根据英文原版的自己翻译和结合网上知识后的理解,所以有些段落之间并不能够串联上或者知识点与书上略有差别(基本差别不大,参考的资料属RFC官方文档)。
1311 0
|
网络协议 网络安全 网络架构
《TCP IP 详解卷1:协议》阅读笔记 - 第七章
阅读须知:笔记为阅读《TCP IP 详解卷1:协议》后摘抄的一些知识点,其间也有加入一些根据英文原版的自己翻译和结合网上知识后的理解,所以有些段落之间并不能够串联上或者知识点与书上略有差别(基本差别不大,参考的资料属RFC官方文档)。
1630 0

热门文章

最新文章