SMU可以供电的同时测量电流和电压

简介: SMU可以供电的同时测量电流和电压

SMU可以供电的同时测量电流和电压


SMU本身能够提供电流或电压,同时测量负载或被测设备(DUT:Device Under Test)上的电流和电压。这是与传统电源相比使用SMU的优势之一。


SMU测量的电流和电压值将反映在NI-DCPower软面板中;或者,如果在LabVIEW中编程,则可以使用niDCPower Fetch. vi 或 niDCPower Read. vi 来获取这些值。


在为您的应用选择模块化SMU时,确定软件和分析功能非常重要,此因素可能会帮助在两种仪器之间进行选择。


独立式SMU通常使用具有供应商定义功能的基本寄存器级命令,而模块化SMU是用户可定义的,可灵活地解决应用的需求。箱式SMU提供了许多标准功能,能够满足许多工程师的常见需求。不难想象,这些标准功能并不能解决每个应用需求,尤其是自动化测试应用。如果您需要定义示波器进行的测量,可选择模块化SMU而非具有固定功能的独立式SMU,模块化SMU利用PC架构的优势,让您能够根据需求对应用进行自定义。


NI SMU使用免费的NI-DCPpower驱动程序软件进行完全编程。NI-DCPPower是一种兼容IVI仪器驱动程序,随附于NI电源或SMU,可与所有NI可编程电源和SMU进行通信。NI-DCPower提供一系列操作和属性,可执行电源或SMU的功能,并包含一个交互式软前面板。




除了软前面板之外,您还可使用NI LabVIEW、NI LabWindows™/CVI、Visual Basic和.NET在NI-DCPower驱动软件中编程模块化SMU,以实现针对各种应用的常见和自定义测量。该驱动程序还支持在LabVIEW中基于配置的快速功能。



这是LabVIEW的一个功能介绍,更多的使用方法与开发案例,欢迎登录官网,了解更多信息。有需要LabVIEW项目合作开发,请与我们联系。

相关文章
|
1月前
|
传感器 芯片
一款完整的单节锂离子电池采用恒定电流/恒定电压线性充电器
一、基本概述 TX5806是一款完整的单节锂离子电池采用恒定电流/恒定电压线性充电器。芯片外部元件少,使芯片成为便携式应用的理想选择。芯片可以适合 USB 电源和适配器电源工作。由于采用了内部P-MOS架构,加上防倒充电路,所以不需要外部隔离二极管。热反馈可对充电电流进行自动调节,以便在大功率操作或高环境温度 条件下对芯片温度加以限制。 充电电压固定于 4.2V,而充电电流可通过一个外部电阻进行设置。当充电电流在达到最终浮充电压之后降至设定值 1/10 时,芯片将自动终止充电循环。当输入电压被拿掉时,芯片自动进入一个低电流状态,将电池漏电流降至 2uA 以下。芯片在有电源时也可置于停机模
26 0
一款完整的单节锂离子电池采用恒定电流/恒定电压线性充电器
|
8月前
功率放大器的介绍
一、功率放大器的作用 功率放大器的主要作用是将输入信号的功率放大到足够的水平,以驱动负载。在音频领域,功率放大器用于将低功率的音频信号放大到足够大的功率,以驱动扬声器,使声音更加清晰、响亮。在射频领域,功率放大器用于将低功率的射频信号放大到足够大的功率,以驱动天线,实现无线通信。在激光领域,功率放大器用于将低功率的激光信号放大到足够大的功率,以驱动激光器,实现激光切割、激光打印等应用。 二、功率放大器的原理 功率放大器的原理基于晶体管的工作原理,主要分为两种类型:A类放大器和AB类放大器。 A类放大器是一种线性放大器,其工作在整个输入信号周期内,将输入信号的功率放大到更高的水平。它具有简单的电
45 0
|
8月前
|
传感器
差动放大器的介绍
一、差动放大器的原理 差动放大器是通过两个输入信号的差值来放大信号的一种电路。它由两个输入端口和一个输出端口组成,输入端口分别连接两个输入信号,输出端口连接放大后的信号。差动放大器的原理基于差动放大模式,即将两个输入信号分别连接到两个晶体管的基极端口,通过晶体管的放大作用将差值放大后输出。 差动放大器的工作原理是利用两个晶体管的共射放大作用,通过对输入信号进行差分放大,将差值放大后输出。其中一个晶体管的基极连接到输入信号,另一个晶体管的基极连接到输入信号的反相信号。通过对两个晶体管的控制,可以实现对输入信号的放大和输出。 二、差动放大器的工作方式 差动放大器的工作方式主要包括共模模式和差模
283 0
|
8月前
|
安全
直流稳压电源
直流稳压电源是一种能够提供稳定输出电压的电源设备。它可以将交流电源转换为直流电源,并通过电路控制保持输出电压的稳定性。
44 0
|
1月前
|
存储 芯片
|
1月前
|
存储 芯片 安全
|
1月前
|
传感器 存储 前端开发
电源常用电路:采样电路
在之前的帖子中,我们已经介绍了数字电源及其核心控制器PPEC。当然,数字电源除了包含电源拓扑电路以及数字控制核心外,还包括采样、驱动和通讯等外围电路。 本篇就先对电源的ADC采样原理和常用的采样调理电路进行介绍吧。 一、ADC采样原理 ADC(模数转换器)采样是将模拟信号按照一定的采样频率进行离散化,然后转换为数字信号的过程,通常包括采样、保持、量化和编码四个步骤。 ▍采样 采样主要实现模拟信号的离散化处理,即将连续的模拟信号转换为一系列时间间隔相等的模拟信号。 采样的间隔由采样频率决定,频率越高采样得到的信号越接近原始信号。但较高的采样频率会使得数据量增加,同时对系统的转换速度要
49 4