15000字、6个代码案例、5个原理图让你彻底搞懂Synchronized(上)

简介: 15000字、6个代码案例、5个原理图让你彻底搞懂Synchronized

Synchronized

本篇文章将围绕synchronized关键字,使用大量图片、案例深入浅出的描述CAS、synchronized Java层面和C++层面的实现、锁升级的原理、源码等

大概观看时间17分钟

可以带着几个问题去查看本文,如果认真看完,问题都会迎刃而解:

1、synchronized是怎么使用的?在Java层面是如何实现?

2、CAS是什么?能带来什么好处?又有什么缺点?

3、mark word是什么?跟synchronized有啥关系?

4、synchronized的锁升级优化是什么?在C++层面如何实现?

5、JDK 8 中轻量级锁CAS失败到底会不会自旋?

6、什么是object monitor?wait/notify方法是如何实现的?使用synchronized时,线程阻塞后是如何在阻塞队列中排序的?

...

synchronized Java层面实现

synchronized作用在代码块或方法上,用于保证并发环境下的同步机制

任何线程遇到synchronized都要先获取到锁才能执行代码块或方法中的操作

在Java中每个对象有一个对应的monitor对象(监视器),当获取到A对象的锁时,A对象的监视器对象中有个字段会指向当前线程,表示这个线程获取到A对象的锁(详细原理后文描述)

synchronized可以作用于普通对象和静态对象,当作用于静态对象、静态方法时,都是去获取其对应的Class对象的锁

synchronized作用在代码块上时,会使用monitorentry和monitorexit字节码指令来标识加锁、解锁

synchronized作用在方法上时,会在访问标识上加上synchronized

指令中可能出现两个monitorexit指令是因为当发生异常时,会自动执行monitorexit进行解锁

正常流程是PC 12-14,如果在此期间出现异常就会跳转到PC 17,最终在19执行monitorexit进行解锁

        Object obj = new Object();
        synchronized (obj) {
        }

image.png

上篇文章中我们说过原子性、可见性以及有序性

synchronized加锁解锁的字节码指令使用屏障,加锁时共享内存从主内存中重新读取,解锁前把工作内存数据写回主内存以此来保证可见性

由于获取到锁才能执行相当于串行执行,也就保证原子性和有序性,需要注意的是加锁与解锁之间的指令还是可以重排序的

CAS

为了更好的说明synchronized原理和锁升级,我们先来聊聊CAS

上篇文章中我们说过,volatile不能保证复合操作的原子性,使用synchronized方法或者CAS能够保证复合操作原子性

那什么是CAS呢?

CAS全称 Compare And Swap 比较并交换,读取数据后要修改时用读取的数据和地址上的值进行比较,如果相等那就将地址上的值替换为目标值,如果不相等,通常会重新读取数据再进行CAS操作,也就是失败重试

synchronized加锁是一种悲观策略,每次遇到时都认为会有并发问题,要先获取锁才操作

而CAS是一种乐观策略,每次先大胆的去操作,操作失败(CAS失败)再使用补偿措施(失败重试)

CAS与失败重试(循环)的组合构成乐观锁或者说自旋锁(循环尝试很像在自我旋转)

并发包下的原子类,依靠Unsafe大量使用CAS操作,比如AtomicInteger的自增

    public final int getAndIncrement() {
        return unsafe.getAndAddInt(this, valueOffset, 1);
    }
    //var1是调用方法的对象,var2是需要读取/修改的值在这个对象上的偏移量,var4是自增1
    public final int getAndAddInt(Object var1, long var2, int var4) {
        int var5;
        do {
            //var5是通过对象和字段偏移量获取到字段最新值
            var5 = this.getIntVolatile(var1, var2);
            //cas:var1,var2找到字段的值 与 var5比较,相等就替换为 var5+var4 
        } while(!this.compareAndSwapInt(var1, var2, var5, var5 + var4));
        return var5;
    }

CAS只能对一个变量进行操作,如果要对多个变量进行操作,那么只能对外封装一层(将多个变量封装为新对象的字段),再使用原子类中的AtomicReference

不知各位同学有没有发现,CAS的流程有个bug,就是在读数据与比较数据之间,如果数据从A被改变到B,再改变到A,那么CAS也能执行成功

这种场景有的业务能够接受,有的业务无法接受,这就是所谓的ABA问题

而解决ABA问题的方式比较简单,可以再比较时附加一个自增的版本号,JDK也提供解决ABA问题的原子类AtomicStampedReference

CAS能够避免线程阻塞,但如果一直失败就会一直循环,增加CPU的开销,CAS失败后重试的次数/时长不好评估

因此CAS操作适用于竞争小的场景,用CPU空转的开销来换取线程阻塞挂起/恢复的开销

锁升级

早期版本的synchronized会将获取不到锁的线程直接挂起,性能不好

JDK 6 时对synchronized的实现进行优化,也就是锁升级

锁的状态可以分为无锁、偏向锁、轻量级锁、重量级锁

可以暂时把重量级锁理解为早期获取不到锁就让线程挂起,新的优化也就是轻量级锁和偏向锁

mark word

为了更好的说明锁升级,我们先来聊聊Java对象头中的mark word

我们下面的探究都是围绕64位的虚拟机

Java对象的内存由mark word、klass word、如果是数组还要记录长度、实例数据(字段)、对其填充(填充到8字节倍数)组成

mark word会记录锁状态,在不同锁状态的情况下记录的数据也不同

下面这个表格是从无锁到重量级锁mark word记录的内容

|----------------------------------------------------------------------|--------|--------|
| unused:25 | identity_hashcode:31 | unused:1 | age:4 | biased_lock:1  | lock:2 | 无锁   
|----------------------------------------------------------------------|--------|--------|
|  thread:54 |         epoch:2      | unused:1 | age:4 | biased_lock:1 | lock:2 | 偏向锁
|----------------------------------------------------------------------|--------|--------|
|                     ptr_to_lock_record:62                            | lock:2 | 轻量级锁
|----------------------------------------------------------------------|--------|--------|
|                     ptr_to_heavyweight_monitor:62                    | lock:2 | 重量级锁
|----------------------------------------------------------------------|--------|--------|

identity_hashcode 用于记录一致性哈希

age 用于记录GC年龄

biased_lock 标识是否使用偏向锁,0表示未开启,1表示开启

lock 用于标识锁状态标志位,01无锁或偏向锁、00轻量级锁、10重量级锁

thread 用于标识偏向的线程

epoch 记录偏向的时间戳

ptr_to_lock_record 记录栈帧中的锁记录(后文介绍)

ptr_to_heavyweight_monitor 记录获取重量级锁的线程

jol查看mark word

比较熟悉mark word的同学可以跳过

了解mark word后再来熟悉下不同锁状态下的mark word,我使用的是jol查看内存

       <!-- https://mvnrepository.com/artifact/org.openjdk.jol/jol-core -->
        <dependency>
            <groupId>org.openjdk.jol</groupId>
            <artifactId>jol-core</artifactId>
            <version>0.12</version>
        </dependency>
无锁

各位同学实验时的mark word可能和我注释中的不同,我们主要查看锁标识的值和是否启用偏向锁

image.png

    public void noLock() {
        Object obj = new Object();
        //mark word  00000001 被unused:1,age:4,biased_lock:1,lock:2使用,001表示0未启用偏向锁,01表示无锁
        //01 00 00 00  (00000001 00000000 00000000 00000000)
        //00 00 00 00  (00000000 00000000 00000000 00000000)
        ClassLayout objClassLayout = ClassLayout.parseInstance(obj);
        System.out.println(objClassLayout.toPrintable());
        //计算一致性哈希后
        //01 b6 ce a8
        //6a 00 00 00
        obj.hashCode();
        System.out.println(objClassLayout.toPrintable());
        //进行GC 查看GC年龄 0 0001 0 01 前2位表示锁状态01无锁,第三位biased_lock为0表示未启用偏向锁,后续四位则是GC年龄age 1
        //09 b6 ce a8 (00001001 10110110 11001110 10101000)
        //6a 00 00 00 (01101010 00000000 00000000 00000000)
        System.gc();
        System.out.println(objClassLayout.toPrintable());
    }
轻量级锁
    public void lightLockTest() throws InterruptedException {
        Object obj = new Object();
        ClassLayout objClassLayout = ClassLayout.parseInstance(obj);
        //1334729950
        System.out.println(obj.hashCode());
        //0 01 无锁
        //01 4e c0 d5 (00000001 01001110 11000000 11010101)
        //6a 00 00 00 (01101010 00000000 00000000 00000000)
        System.out.println(Thread.currentThread().getName() + ":");
        System.out.println(objClassLayout.toPrintable());
        Thread thread1 = new Thread(() -> {
            synchronized (obj) {
                // 110110 00 中的00表示轻量级锁其他62位指向拥有锁的线程
                //d8 f1 5f 1d (11011000 11110001 01011111 00011101)
                //00 00 00 00 (00000000 00000000 00000000 00000000)
                System.out.println(Thread.currentThread().getName() + ":");
                System.out.println(objClassLayout.toPrintable());
                //1334729950
                //无锁升级成轻量级锁后 hashcode未变 对象头中没存储hashcode 只存储拥有锁的线程
                //(实际上mark word内容被存储到lock record中,所以hashcode也被存储到lock record中)
                System.out.println(obj.hashCode());
            }
        }, "t1");
        thread1.start();
        //等待t1执行完 避免 发生竞争
        thread1.join();
        //轻量级锁 释放后 mark word 恢复成无锁 存储哈希code的状态
        //01 4e c0 d5 (00000001 01001110 11000000 11010101)
        //6a 00 00 00 (01101010 00000000 00000000 00000000)
        System.out.println(Thread.currentThread().getName() + ":");
        System.out.println(objClassLayout.toPrintable());
        Thread thread2 = new Thread(() -> {
            synchronized (obj) {
                //001010 00 中的00表示轻量级锁其他62位指向拥有锁的线程
                //28 f6 5f 1d (00101000 11110110 01011111 00011101)
                //00 00 00 00 (00000000 00000000 00000000 00000000)
                System.out.println(Thread.currentThread().getName() + ":");
                System.out.println(objClassLayout.toPrintable());
            }
        }, "t2");
        thread2.start();
        thread2.join();
    }
偏向锁
    public void biasedLockTest() throws InterruptedException {
        //延迟让偏向锁启动
        Thread.sleep(5000);
        Object obj = new Object();
        ClassLayout objClassLayout = ClassLayout.parseInstance(obj);
        //1 01 匿名偏向锁 还未设置偏向线程
        //05 00 00 00 (00000101 00000000 00000000 00000000)
        //00 00 00 00 (00000000 00000000 00000000 00000000)
        System.out.println(Thread.currentThread().getName() + ":");
        System.out.println(objClassLayout.toPrintable());
        synchronized (obj) {
            //偏向锁 记录 线程地址
            //05 30 e3 02 (00000101 00110000 11100011 00000010)
            //00 00 00 00 (00000000 00000000 00000000 00000000)
            System.out.println(Thread.currentThread().getName() + ":");
            System.out.println(objClassLayout.toPrintable());
        }
        Thread thread1 = new Thread(() -> {
            synchronized (obj) {
                //膨胀为轻量级 0 00 0未启用偏向锁,00轻量级锁
                //68 f4 a8 1d (01101000 11110100 10101000 00011101)
                //00 00 00 00 (00000000 00000000 00000000 00000000)
                System.out.println(Thread.currentThread().getName() + ":");
                System.out.println(objClassLayout.toPrintable());
            }
        }, "t1");
        thread1.start();
        thread1.join();
    }
重量级锁
    public void heavyLockTest() throws InterruptedException {
        Object obj = new Object();
        ClassLayout objClassLayout = ClassLayout.parseInstance(obj);
        Thread thread1 = new Thread(() -> {
            synchronized (obj) {
                //第一次 00 表示 轻量级锁
                //d8 f1 c3 1e (11011000 11110001 11000011 00011110)
                //00 00 00 00 (00000000 00000000 00000000 00000000)
                System.out.println(Thread.currentThread().getName() + ":");
                System.out.println(objClassLayout.toPrintable());
                //用debug控制t2来竞争
                //第二次打印 变成 10 表示膨胀为重量级锁(t2竞争)  其他62位指向监视器对象
                //fa 21 3e 1a (11111010 00100001 00111110 00011010)
                //00 00 00 00 (00000000 00000000 00000000 00000000)
                System.out.println(Thread.currentThread().getName() + ":");
                System.out.println(objClassLayout.toPrintable());
            }
        }, "t1");
        thread1.start();
        Thread thread2 = new Thread(() -> {
            synchronized (obj) {
                //t2竞争 膨胀为 重量级锁 111110 10 10为重量级锁
                //fa 21 3e 1a (11111010 00100001 00111110 00011010)
                //00 00 00 00 (00000000 00000000 00000000 00000000)
                System.out.println(Thread.currentThread().getName() + ":");
                System.out.println(objClassLayout.toPrintable());
            }
        }, "t2");
        thread2.start();
        thread1.join();
        thread2.join();
        //10 重量级锁 未发生锁降级
        //3a 36 4d 1a (00111010 00110110 01001101 00011010)
        //00 00 00 00 (00000000 00000000 00000000 00000000)
        System.out.println(Thread.currentThread().getName() + ":");
        System.out.println(objClassLayout.toPrintable());
    }

轻量级锁

轻量级锁的提出是为了减小传统重量级锁使用互斥量(挂起/恢复线程)所产生的开销

面对较少的竞争场景时,获取锁的时间总是短暂的,而挂起线程用户态、内核态的开销比较大,使用轻量级锁减少开销

那么轻量级锁是如何实现的呢?

轻量级锁主要由lock record、mark word、CAS来实现,lock record存储在线程的栈帧中,来记录锁的信息

加锁

查看对象是不是无锁状态,如果对象是无锁状态,会将mark word复制到lock record锁记录中的displaced mark word

image.png

然后再尝试使用CAS尝试将mark word中部分内容替换指向这个lock record,如果成功表示获取锁成功

image.png

如果对象持有锁,会查看持有锁的线程是不是当前线程,这种可重入的情况下lock record中记录不再是mark word而是null

可重入的情况下,只需要进行自增计数即可,解锁时遇到null的lock record则扣减

image.png

如果CAS失败或者持有锁的线程不是当前线程,就会触发锁膨胀

关键代码如下:

void ObjectSynchronizer::slow_enter(Handle obj, BasicLock* lock, TRAPS) {
  //当前对象的mark word
  markOop mark = obj->mark();
  assert(!mark->has_bias_pattern(), "should not see bias pattern here");
  //如果当前对象是无锁状态 
  if (mark->is_neutral()) {
    //将mark word复制到lock record
    lock->set_displaced_header(mark);
    //CAS将当前对象的mark word内容替换为指向lock record
    if (mark == (markOop) Atomic::cmpxchg_ptr(lock, obj()->mark_addr(), mark)) {
      TEVENT (slow_enter: release stacklock) ;
      return ;
    }
  } else
  //如果有锁  判断是不是当前线程获取锁
  if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
    assert(lock != mark->locker(), "must not re-lock the same lock");
    assert(lock != (BasicLock*)obj->mark(), "don't relock with same BasicLock");
    //可重入锁 复制null
    lock->set_displaced_header(NULL);
    return;
  }
  //有锁并且获取锁的线程不是当前线程 或者 CAS失败 进行膨胀
  lock->set_displaced_header(markOopDesc::unused_mark());
  ObjectSynchronizer::inflate(THREAD, obj())->enter(THREAD);
}

15000字、6个代码案例、5个原理图让你彻底搞懂Synchronized(下)

https://developer.aliyun.com/article/1504425?spm=a2c6h.13148508.setting.16.55974f0e4rkwEt

相关文章
|
6月前
|
存储 Java C++
|
5月前
|
Java
Java线程学习经典例子-读写者演示
Java线程学习经典例子-读写者演示
25 0
|
6月前
|
缓存 Java
5个案例和流程图让你从0到1搞懂volatile关键字
5个案例和流程图让你从0到1搞懂volatile关键字
【51单片机】静态数码管显示(设计思路&原理&代码演示)
【51单片机】静态数码管显示(设计思路&原理&代码演示)
|
6月前
解释一下什么是VIF。
解释一下什么是VIF。
685 0
|
6月前
|
存储 编译器 程序员
近4w字吐血整理!只要你认真看完【C++编程核心知识】分分钟吊打面试官(包含:内存、函数、引用、类与对象、文件操作)
近4w字吐血整理!只要你认真看完【C++编程核心知识】分分钟吊打面试官(包含:内存、函数、引用、类与对象、文件操作)
|
存储 缓存 监控
|
消息中间件 缓存 监控
7000字+24张图带你彻底弄懂线程池(1)
7000字+24张图带你彻底弄懂线程池(1)
|
存储 监控 Java
7000字+24张图带你彻底弄懂线程池(2)
7000字+24张图带你彻底弄懂线程池(2)
【数字IC手撕代码】Verilog异步复位同步释放|题目|原理|设计|仿真
【数字IC手撕代码】Verilog异步复位同步释放|题目|原理|设计|仿真
【数字IC手撕代码】Verilog异步复位同步释放|题目|原理|设计|仿真