[transformer]论文实现:Attention Is All You Need(下)

本文涉及的产品
NLP自然语言处理_基础版,每接口每天50万次
NLP自然语言处理_高级版,每接口累计50万次
NLP 自学习平台,3个模型定制额度 1个月
简介: [transformer]论文实现:Attention Is All You Need(下)

[transformer]论文实现:Attention Is All You Need(上)https://developer.aliyun.com/article/1504069?spm=a2c6h.13148508.setting.44.36834f0eMJOehx

2.4 注意力机制

从图中可以发现,Multi-Head AttentionAdd & Norm同样一起遍布了整个模型;

注意力机制是怎么工作的

图中有四个东西,QueryKeyValueAttention,图中把KeyValue放在了一起是因为其产生的output是与KeyValue的维度是无关的,只与Query的维度有关;文中把KeyValue称作为Context sequenceQuery还是称作为Query sequence;为什么要这么做?可以看模型中右上方的Multi-Head Attention和左下角的Multi-Head Attention的区别进行分析;

QueryKeyValue这三个东西可以用python中的字典来解释,KeyValue表示字典中的键值对,而Query表示我们需要查询的键,QueryKeyValue匹配其得到的结果就是我们需要的信息;但是在这里并不要求QueryKey严格匹配,只需要模糊匹配就可以;Query对每一个Key进行一次模糊的匹配,并给出匹配程度,越适配权重就越大,然后根据权重再与每一个Value进行组合,得到最后的结果;其匹配程度的权重就代表了注意力机制的权重;

多头注意力机制就是把QueryKeyValue多个维度的向量分为几个少数维度的向量组合,再在Query_iKey_iValue_i上进行操作,最后把结果合并;

模型中Multi-Head Attention有三个, 这三个分别对应三种Multi-Head Attention Layerthe cross attention layerthe global self attention layerthe causal self attention layer,从图中也可以发现每一层都有各自的不同,下面来一一介绍;

the cross attention layer:模型右上角(解码器)的Multi-Head Attention是注意力机制最直接的使用,其将编码器的信息和解码器的信息充分的结合了起来,文中把这一层叫做the cross attention layer;其context sequenceEncoder中得到的;

在这里要注意的是,每一次的查询是可以看得到所有的KeyValue的,但是查询与查询相互之间是看不到的,即独立的;

the global self attention layer:模型左下角(编码器)的Multi-Head Attention,这一层负责处理上下文序列,并沿着他的长度去传播信息即QueryQuery之间的信息;

Query与Query之间的信息传播有很多种方式,例如在Transformer没出来之间我们普遍采用Bidirectional RNNsCNNs的方式来处理;

但是为什么这里不使用RNNCNN的方法呢?

RNNCNN的限制

  • RNN 允许信息沿着序列一路流动,但是它要经过许多处理步骤才能到达那里(限制梯度流动)。这些 RNN 步骤必须按顺序运行,因此 RNN 不太能够利用现代并行设备的优势。
  • 在 CNN 中,每个位置都可以并行处理,但它只提供有限的接收场。接收场只随着 CNN 层数的增加而线性增长,需要叠加许多卷积层来跨序列传输信息(小波网通过使用扩张卷积来减少这个问题)。

the global self attention layer允许每个序列元素直接访问每个其他序列元素,只需少量操作,并且所有输出都可以并行计算。 就像下图这样:

虽然图像类似于线性层,其本质好像也是线性层,但是其信息传播能力要比普通的线性层要强;

the causal self attention layer:因果自注意层,这一层与the global self attention layer类似,其不同的特点是需要maskMasked Multi-Head Attention;这里要注意的是Transformer是一个自回归模型,每次产生一个输出并且把输出当作输入用来继续产生输出,因此这些模型确保每个序列元素的输出仅依赖于先前的序列元素,所以需要对Attention weights进行处理;

根据论文公式:

  image.png

可以发现 Q 和  K是做矩阵运算的,Attention中的单个元素计算是Q中的某行和 K中的某行做点积运算;论文中是计算 Attention后在相应掩码位置乘一个无穷小,这里其实可以优化一下,只计算 Attention有效的位置,可以加快速度;

这一层根据训练和推理有一点不同,如上文所说,在训练时,我们不需要每一次新产生的输出做为输入,我们直接用真值(shift)代替新产生的输出进行训练就好,这样可以在缺失一点稳定性的情况下,加快训练速度,并得到每一个位置上的损失大小;

在推理时,我们并没有真值,我们只能以每一次新产生的输出作为输入进行计算,这里有两种自回归的处理方式;一个是RNN,一个是CNN:Fast Wavenet

以下是该层的简要表示,即每个序列元素的输出仅依赖于先前的序列元素;

2.5 前馈神经网络

在encoder和decoder中,都包含了Feed Forward网络,如图所示:

该网络由两个线性层组成。中间有一个relu激活函数,还有一个dropout层;这里面维度变化是把d_model维先提升到dff维度,然后把dff维度降低到d_model维度;

三、过程实现

3.1 安装包和导包

import tensorflow as tf
import keras_nlp
import matplotlib.pyplot as plt
import numpy as np
plt.rcParams['font.sans-serif']=['SimHei'] 
plt.rcParams['axes.unicode_minus']=False

3.2 数据准备

训练的过程如图所示:

从图中我们可以看出,我们需要准备好源sequence和两个目标sequence,其中源sequence前后应该有\

这里需要提醒的一点是,右侧训练过程是不依赖每一步的输出结果的:这种设置被称为“teacher forcing”,因为不管模型在每个时间步的输出如何,它都会获得下一个时间步的真值作为输入。这是训练文本生成模型的一种简单而有效的方法。这是有效的,因为不需要顺序运行模型,在不同的序列位置的输出可以并行计算。

You might have expected the `input, output`, pairs to simply be the `Portuguese, English` sequences. Given the Portuguese sequence, the model would try to generate the English sequence.
It's possible to train a model that way. You'd need to write out the inference loop and pass the model's output back to the input. It's slower (time steps can't run in parallel), and a harder task to learn (the model can't get the end of a sentence right until it gets the beginning right), but it can give a more stable model because the model has to learn to correct its own errors during training.

总结就是 teacher forcing 通过舍弃模型的稳定性,加快学习训练速度,相关代码如下:

# 数据处理
def process_data(x):
    res = tf.strings.split(x, '\t')
    return res[1], res[3]
# 导入数据
dataset = tf.data.TextLineDataset('ch-en.tsv')
dataset = dataset.map(process_data)
# 建立中英文wordpiece词表
vocab_chinese = keras_nlp.tokenizers.compute_word_piece_vocabulary(
    dataset.map(lambda x, y: x),
    vocabulary_size=20_000,
    lowercase=True,
    strip_accents=True,
    split_on_cjk=True,
    reserved_tokens=["[PAD]", "[START]", "[END]", "[MASK]", "[UNK]"],
)
vocab_english = keras_nlp.tokenizers.compute_word_piece_vocabulary(
    dataset.map(lambda x, y: y),
    vocabulary_size=20_000,
    lowercase=True,
    strip_accents=True,
    split_on_cjk=True,
    reserved_tokens=["[PAD]", "[START]", "[END]", "[MASK]", "[UNK]"],
)
# 构建分词器
chinese_tokenizer = keras_nlp.tokenizers.WordPieceTokenizer(vocabulary=vocab_chinese, oov_token="[UNK]")
english_tokenizer = keras_nlp.tokenizers.WordPieceTokenizer(vocabulary=vocab_english, oov_token="[UNK]")
# 再进行一次数据处理
def process_data_(ch, en, maxtoken=128):
    
    ch = chinese_tokenizer(ch)[:,:maxtoken]
    en = english_tokenizer(tf.strings.lower(en))[:,:maxtoken]
    
    ch = tf.concat([tf.ones(shape=(64,1), dtype='int32'), ch, tf.ones(shape=(64,1), dtype='int32')*2], axis=-1).to_tensor()
    en = tf.concat([tf.ones(shape=(64,1), dtype='int32'), en, tf.ones(shape=(64,1), dtype='int32')*2], axis=-1)
    en_inputs = en[:, :-1].to_tensor()  # Drop the [END] tokens
    en_labels = en[:, 1:].to_tensor() # Drop the [START] tokens
    return (ch, en_inputs), en_labels
    
dataset = dataset.batch(64).map(process_data_)
train_dataset = dataset.take(1000)
val_dataset = dataset.skip(500).take(300)
# 数据准备完毕 查看数据
# for (pt, en), en_labels in dataset.take(1):
#     break
# print(pt.shape)
# print(en.shape)
# print(en_labels.shape)
# (64, 33)
# (64, 28)
# (64, 28)

3.3 词嵌入和位置编码

词嵌入和位置编码的地方一共有两处,一处是Input,一处是Output(shifted right);两处采用位置编码的方式是一样的;

位置编码函数如下:

def positional_encoding(length, depth):
    depth = depth/2
    
    positions = np.arange(length)[:, np.newaxis]     # (seq, 1)
    depths = np.arange(depth)[np.newaxis, :]/depth   # (1, depth)
    
    angle_rates = 1 / (10000**depths)         # (1, depth)
    angle_rads = positions * angle_rates      # (pos, depth)
    
    pos_encoding = np.concatenate(
      [np.sin(angle_rads), np.cos(angle_rads)],
      axis=-1) 
    
    return tf.cast(pos_encoding, dtype=tf.float32)

词嵌入和位置编码层的代码如下:

class PositionEmbedding(tf.keras.layers.Layer):
    def __init__(self, vocabulary_size, d_model):
        super().__init__()
        self.d_model = d_model
        self.embedding = tf.keras.layers.Embedding(vocabulary_size, d_model, mask_zero=True)
        self.pos_encoding = positional_encoding(length=2048, depth=d_model)
    def compute_mask(self, *args, **kwargs):
        return self.embedding.compute_mask(*args, **kwargs)
    
    def call(self, x):
        length = tf.shape(x)[1]
        x = self.embedding(x)
        x *= tf.math.sqrt(tf.cast(self.d_model, tf.float32))
        x = x + self.pos_encoding[tf.newaxis, :length, :]
        return x

3.4 注意力机制

模型中Multi-Head Attention有三个, 这三个分别对应三种Multi-Head Attention Layerthe cross attention layerthe global self attention layerthe causal self attention layer,如图所示:

定义一个BaseAttention

class BaseAttention(tf.keras.layers.Layer):
    def __init__(self, **kwargs):
        super().__init__()
        self.mha = tf.keras.layers.MultiHeadAttention(**kwargs)
        self.layernorm = tf.keras.layers.LayerNormalization()
        self.add = tf.keras.layers.Add()

the cross attention layer定义如下:

class CrossAttention(BaseAttention):
    def call(self, x, context):
        attn_output, attn_scores = self.mha(
            query=x,
            key=context,
            value=context,
            return_attention_scores=True)
        
        # Cache the attention scores for plotting later.
        self.last_attn_scores = attn_scores
        
        x = self.add([x, attn_output])
        x = self.layernorm(x)
        
        return x

the global self attention layer定义如下:

class GlobalSelfAttention(BaseAttention):
    def call(self, x):
        attn_output = self.mha(
            query=x,
            value=x,
            key=x)
        x = self.add([x, attn_output])
        x = self.layernorm(x)
        return x

the causal self attention layer定义如下:

class CausalSelfAttention(BaseAttention):
    def call(self, x):
        attn_output = self.mha(
            query=x,
            value=x,
            key=x,
            use_causal_mask = True)
        x = self.add([x, attn_output])
        x = self.layernorm(x)
        return x

3.5 前馈神经网络

该网络由两个线性层组成。中间有一个relu激活函数,还有一个dropout层;这里面维度变化是把d_model维先提升到dff维度,然后把dff维度降低到d_model维度;

代码如下:

class FeedForward(tf.keras.layers.Layer):
    def __init__(self, d_model, dff, dropout_rate=0.1):
        super().__init__()
        self.seq = tf.keras.Sequential([
          tf.keras.layers.Dense(dff, activation='relu'),
          tf.keras.layers.Dense(d_model),
          tf.keras.layers.Dropout(dropout_rate)
        ])
        self.add = tf.keras.layers.Add()
        self.layer_norm = tf.keras.layers.LayerNormalization()
    
    def call(self, x):
        x = self.add([x, self.seq(x)])
        x = self.layer_norm(x) 
        return x

3.6 编码器

模型结构如下,论文中编码器是由6个编码层组成的;

编码层代码如下:

class EncoderLayer(tf.keras.layers.Layer):
    def __init__(self, *, d_model, num_heads, dff, dropout=0.1):
        super().__init__()
        self.self_attention = GlobalSelfAttention(
            num_heads = num_heads,
            key_dim = d_model,
            dropout = dropout
        )
        self.ffn = FeedForward(d_model, dff)
    def call(self, x):
        x = self.self_attention(x)
        x = self.ffn(x)
        return x

编码器代码如下:

class Encoder(tf.keras.layers.Layer):
    def __init__(self, *, vocabulary_size, d_model, nums_heads, dff, num_layers=6, dropout=0.1):
        super().__init__()
        # 给Encoder添加属性,便于辨识
        self.d_model = d_model
        self.num_layers = num_layers
        
        self.pos_embedding  = PositionEmbedding(vocabulary_size, d_model)
        self.encoder_layers = [EncoderLayer(d_model=d_model, num_heads=nums_heads, dff=dff, dropout=dropout) for _ in range(num_layers)]
        self.dropout = tf.keras.layers.Dropout(dropout)
    def call(self, x):
        x = self.pos_embedding(x)
        x = self.dropout(x)
        for encoder_layer in self.encoder_layers:
            x = encoder_layer(x)
        return x

3.7 解码器

模型结构如下,论文中解码器是由6个解码层组成的;

解码层代码如下:

class DecoderLayer(tf.keras.layers.Layer):
    def __init__(self, *, d_model, num_heads, dff, dropout=0.1):
        super().__init__()
        self.causal_self_attention = CausalSelfAttention(num_heads=num_heads, key_dim=d_model, dropout=dropout)
        self.cross_attention = CrossAttention(num_heads=num_heads, key_dim=key_dim, dropout=dropout)
        self.ffn = FeedForward(d_model, dff)
    def call(self, x, context):
        x = self.causal_self_attention(x)
        x = self.cross_attention(x, context)
        
        # 这里存储最后的注意力分数为了后面的画图
        self.last_attn_scores = self.cross_attention.last_attn_scores
        x = self.ffn(x)
        return x

解码器代码如下:

class Decoder(tf.keras.layers.Layer):
    def __init__(self, *, vocabulary_size, d_model, num_heads, dff, num_layers=6, dropout=0.1):
        super(Decoder, self).__init__()
        self.d_model = d_model
        self.num_layers = num_layers
        self.pos_embedding = PositionEmbedding(vocabulary_size=vocabulary_size, d_model=d_model)
        self.decoder_layers = [DecoderLayer(d_model=d_model, num_heads=num_heads, dff=dff, dropout=dropout) for _ in range(num_layers)]
        self.dropout = tf.keras.layers.Dropout(rate=dropout)
        self.last_attn_scores = None
    def call(self, x, content):
        x = self.pos_embedding(x)
        x = self.dropout(x)
        for decoder_layer in self.decoder_layers:
            x = decoder_layer(x, content)
        self.last_attn_scores = self.decoder_layers[-1].last_attn_scores
        return x

3.8 Transformer

有了编码器和解码器,现在我们来构造Transformer模型,模型的整体框架如下:

需要设置的超参如下:

num_layers = 4
d_model = 128
dff = 512
num_heads = 8
dropout = 0.1

Transformer模型代码如下:

class Transformer(tf.keras.Model):
    def __init__(self, *, num_layers, d_model, num_heads, dff, input_vocabulary_size, target_vocabulary_size, dropout=0.1):
        super().__init__()
        self.encoder = Encoder(vocabulary_size=input_vocabulary_size, d_model=d_model, num_layers=num_layers, num_heads=num_heads, dff=dff)
        self.decoder = Decoder(vocabulary_size=target_vocabulary_size, d_model=d_model, num_layers=num_layers, num_heads=num_heads, dff=dff)
        self.final_layer = tf.keras.layers.Dense(target_vocabulary_size, activation='softmax')
    def call(self, inputs):
        context, x = inputs
        context = self.encoder(context)
        x = self.decoder(x, context)
        logits = self.final_layer(x)
        # 不太理解
        try:
            # Drop the keras mask, so it doesn't scale the losses/metrics.
            # b/250038731
            del logits._keras_mask
        except AttributeError:
            pass
        return logits

以下是不同层数的Transformer和RNN+Attention模型的可视化模型:

模型参数大小如下:

model.summary()

如果出现:This model has not yet been built. Build the model first by calling build() or by calling the model on a batch of data.,试着带入数据build一下模型

model = Transformer(num_layers=num_layers, d_model=d_model, num_heads=num_heads, dff=dff, input_vocabulary_size=chinese_tokenizer.vocabulary_size(), target_vocabulary_size=english_tokenizer.vocabulary_size(), dropout=dropout)
output = model((pt, en))
print(en.shape)
print(pt.shape)
print(output.shape)

3.9 训练

根据原文的公式自定义一个学习率调度器: image.png

代码如下:

class CustomSchedule(tf.keras.optimizers.schedules.LearningRateSchedule):
    def __init__(self, d_model, warmup_steps=4000):
        super().__init__()
        
        self.d_model = d_model
        self.d_model = tf.cast(self.d_model, tf.float32)
        
        self.warmup_steps = warmup_steps
    
    def __call__(self, step):
        step = tf.cast(step, dtype=tf.float32)
        arg1 = tf.math.rsqrt(step)
        arg2 = step * (self.warmup_steps ** -1.5)
        
        return tf.math.rsqrt(self.d_model) * tf.math.minimum(arg1, arg2)
learning_rate = CustomSchedule(d_model)
optimizer = tf.keras.optimizers.Adam(learning_rate, beta_1=0.9, beta_2=0.98, epsilon=1e-9)

调度曲线如下所示:

定义loss和metrics:

def masked_loss(label, pred):
    mask = label != 0
    loss_object = tf.keras.losses.SparseCategoricalCrossentropy(reduction='none')
    loss = loss_object(label, pred)
    
    mask = tf.cast(mask, dtype=loss.dtype)
    loss *= mask
    
    loss = tf.reduce_sum(loss)/tf.reduce_sum(mask)
    return loss
def masked_accuracy(label, pred):
    pred = tf.argmax(pred, axis=2)
    label = tf.cast(label, pred.dtype)
    match = label == pred
    
    mask = label != 0
    
    match = match & mask
    
    match = tf.cast(match, dtype=tf.float32)
    mask = tf.cast(mask, dtype=tf.float32)
    return tf.reduce_sum(match)/tf.reduce_sum(mask)

开始训练:

model.compile(loss=masked_loss, optimizer=optimizer, metrics=[masked_accuracy])
model.fit(train_dataset, epochs=10, validation_data=val_dataset)

3.10 推理

如上文所说,由于推理过程于训练过程不一致,我们需要重新写一个推理的代码,代码如下:

MAX_TOKENS = 128
class Translator(tf.Module):
    def __init__(self, tokenizers, transformer):
        self.tokenizers = tokenizers
        self.transformer = transformer
    
    def __call__(self, sentence, max_length=MAX_TOKENS):
        # sentence是中文,因此需要tokenizer并且加上<start>:1和<end>:2
        assert isinstance(sentence, tf.Tensor)
        if len(sentence.shape) == 0:
            sentence = sentence[tf.newaxis]
        sentence = self.tokenizers(sentence)
        sentence = tf.concat([tf.ones(shape=[sentence.shape[0], 1], dtype='int32'), sentence, tf.ones(shape=[sentence.shape[0], 1], dtype='int32')*2], axis=-1).to_tensor()
        
        encoder_input = sentence
        
        # As the output language is English, initialize the output with the
        start = tf.constant(1, dtype='int64')[tf.newaxis]
        end = tf.constant(2, dtype='int64')[tf.newaxis]
        
        # tf.TensorArray 类似于python中的列表
        output_array = tf.TensorArray(dtype=tf.int64, size=0, dynamic_size=True)
        # 在index=0的位置写入start
        output_array = output_array.write(0, start)
        
        for i in tf.range(max_length):
            output = tf.transpose(output_array.stack())
            predictions = self.transformer([encoder_input, output], training=False) # Shape `(batch_size, seq_len, vocab_size)`
            
            # 从seq_len中的最后一个维度选择last token
            predictions = predictions[:, -1:, :]  # Shape `(batch_size, 1, vocab_size)`.
            predicted_id = tf.argmax(predictions, axis=-1)
            
            # `predicted_id`加入到output_array中作为一个新的输入
            output_array = output_array.write(i+1, predicted_id[0])
            # 如果输出end就表明停止
            if predicted_id == end:
                break
        
        output = tf.transpose(output_array.stack())
        
        # 重新计算一下最外面的循环,得到最后的注意力得分
        self.transformer([encoder_input, output[:,:-1]], training=False)
        attention_weights = self.transformer.decoder.last_attn_scores
        lst = []
        for item in output[0].numpy():
            lst.append(english_tokenizer.vocabulary[item])
        
        translated_text = ''.join(lst)
        translated_tokens = output[0]
        
        return translated_text, translated_tokens, attention_weights```
推理测试:
```python
def print_translation(sentence, tokens, ground_truth):
    print(f'{"Input:":15s}: {sentence}')
    print(f'{"Prediction":15s}: {tokens}')
    print(f'{"Ground truth":15s}: {ground_truth}')
translator = Translator(chinese_tokenizer, model)
sentence = '我們試試看!'
ground_truth = "Let's try it."
translated_text, translated_tokens, attention_weights = translator(tf.constant(sentence))
print_translation(sentence, translated_text, ground_truth)
# Input:         : 我們試試看!
# Prediction     : [START] let ' s try to see this . [END]
# Ground truth   : Let's try it.

3.11 注意力可视化

定义画注意力权重的函数:

def plot_attention_head(in_tokens, translated_tokens, attention):
    # 模型在输出中不产生<START>,我们直接忽略
    translated_tokens = translated_tokens[1:]
    
    ax = plt.gca()
    ax.matshow(attention[0])
    ax.set_xticks(range(len(in_tokens)))
    ax.set_yticks(range(len(translated_tokens)))
    
    labels = [vocab_chinese[label] for label in in_tokens.numpy()]
    ax.set_xticklabels(labels, rotation=90)
    
    labels = [vocab_english[label] for label in translated_tokens.numpy()]
    ax.set_yticklabels(labels)

测试代码如下:

sentence = '我們試試看!'
ground_truth = "Let's try it."
translated_text, translated_tokens, attention_weights = translator(tf.constant(sentence))
in_tokens = tf.concat([tf.constant(1)[tf.newaxis], chinese_tokenizer(tf.constant(sentence)), tf.constant(2)[tf.newaxis]], axis=-1)
attention = tf.squeeze(attention_weights, 0)
# 画第0个头 attention[0] 这里一共有8个头
plot_attention_head(in_tokens, translated_tokens, attention[0])

第0个头结果如下:

四、整体总结

代码有点长!


目录
相关文章
|
7月前
|
机器学习/深度学习 自然语言处理 数据处理
论文《Attention is All You Need》
论文《Attention is All You Need》
354 1
|
机器学习/深度学习 编解码 并行计算
论文阅读笔记 | Transformer系列——CSWin Transformer
论文阅读笔记 | Transformer系列——CSWin Transformer
730 0
论文阅读笔记 | Transformer系列——CSWin Transformer
|
机器学习/深度学习 自然语言处理 搜索推荐
Transformer之十万个为什么?
这篇博文主要结合个人理解和思考,通过整理和自己的解释列出关于Transformer的部分重要问题(持续更新),看完后会对Transformer有个更好的理解。
Transformer之十万个为什么?
|
4月前
|
机器学习/深度学习 PyTorch 算法框架/工具
Transformer
【8月更文挑战第7天】
68 3
|
6月前
|
机器学习/深度学习 人工智能 自然语言处理
Transformer介绍
Transformer模型于2017年由Google提出,其在BERT中大放异彩,革新了NLP领域。Transformer的优势在于并行计算能力和处理长距离依赖,通过自注意力机制避免了RNN/LSTM的梯度问题。它由编码器和解码器组成,使用位置编码处理序列信息。Transformer在机器翻译、文本生成、问答系统等多个任务中提升效率和准确性,并扩展至计算机视觉和语音识别。随着AI发展,Transformer成为大模型核心技术,推动整个产业进步。
|
7月前
|
机器学习/深度学习 数据可视化 TensorFlow
[transformer]论文实现:Attention Is All You Need(上)
[transformer]论文实现:Attention Is All You Need(上)
56 2
|
机器学习/深度学习 自然语言处理 并行计算
【Transformer系列(3)】 《Attention Is All You Need》论文超详细解读(翻译+精读)
【Transformer系列(3)】 《Attention Is All You Need》论文超详细解读(翻译+精读)
1497 0
【Transformer系列(3)】 《Attention Is All You Need》论文超详细解读(翻译+精读)
|
7月前
|
机器学习/深度学习 存储 自然语言处理
Transformer中的FFN介绍
Transformer中的FFN介绍
456 0
Transformer中的FFN介绍
|
机器学习/深度学习 编解码 自然语言处理
论文阅读笔记 | Transformer系列——Swin Transformer
论文阅读笔记 | Transformer系列——Swin Transformer
1249 0
论文阅读笔记 | Transformer系列——Swin Transformer
|
计算机视觉
论文阅读笔记 | Transformer系列——Transformer in Transformer
论文阅读笔记 | Transformer系列——Transformer in Transformer
313 0
论文阅读笔记 | Transformer系列——Transformer in Transformer

热门文章

最新文章

相关实验场景

更多