卡尔曼滤波简介+ 算法实现代码(转)

简介: 卡尔曼滤波简介+ 算法实现代码(转)

最佳线性滤波理论起源于40年代美国科学家Wiener和前苏联科学家Kолмогоров等人的研究工作,后人统称为维纳滤波理论。从理论上说,维纳滤波的最大缺点是必须用到无限过去的数据,不适用于实时处理。为了克服这一缺点,60年代Kalman把状态空间模型引入滤波理论,并导出了一套递推估计算法,后人称之为卡尔曼滤波理论。卡尔曼滤波是以最小均方误差为估计的最佳准则,来寻求一套递推估计的算法,其基本思想是:采用信号与噪声的状态空间模型,利用前一时刻地估计值和现时刻的观测值来更新对状态变量的估计,求出现时刻的估计值。它适合于实时处理和计算机运算。

现设线性时变系统的离散状态防城和观测方程为:

X(k) = F(k,k-1)·X(k-1)+T(k,k-1)·U(k-1)

Y(k) = H(k)·X(k)+N(k)

其中

X(k)和Y(k)分别是k时刻的状态矢量和观测矢量

F(k,k-1)为状态转移矩阵

U(k)为k时刻动态噪声

T(k,k-1)为系统控制矩阵

H(k)为k时刻观测矩阵

N(k)为k时刻观测噪声

则卡尔曼滤波的算法流程为:

  1. 预估计X(k)^= F(k,k-1)·X(k-1)
  2. 计算预估计协方差矩阵
    C(k)^=F(k,k-1)×C(k)×F(k,k-1)'+T(k,k-1)×Q(k)×T(k,k-1)'
    Q(k) = U(k)×U(k)'
  3. 计算卡尔曼增益矩阵
    K(k) = C(k)^×H(k)'×[H(k)×C(k)^×H(k)'+R(k)]^(-1)
    R(k) = N(k)×N(k)'
  4. 更新估计
    X(k)~=X(k)^+K(k)×[Y(k)-H(k)×X(k)^]
  5. 计算更新后估计协防差矩阵
    C(k)~ = [I-K(k)×H(k)]×C(k)^×[I-K(k)×H(k)]'+K(k)×R(k)×K(k)'
  6. X(k+1) = X(k)~
    C(k+1) = C(k)~
    重复以上步骤

其c语言实现代码如下:

#include "stdlib.h"  #include "rinv.c"  int lman(n,m,k,f,q,r,h,y,x,p,g)  int n,m,k;  

double f[],q[],r[],h[],y[],x[],p[],g[];  { int i,j,kk,ii,l,jj,js;    double *e,*a,*b;    e=malloc(m*m*sizeof(double));    l=m;    if (l<n) l=n;    a=malloc(l*l*sizeof(double));    b=malloc(l*l*sizeof(double));    for (i=0; i<=n-1; i++)      for (j=0; j<=n-1; j++)        { ii=i*l+j; a[ii]=0.0;          for (kk=0; kk<=n-1; kk++)            a[ii]=a[ii]+p[i*n+kk]*f[j*n+kk];        }    for (i=0; i<=n-1; i++)      for (j=0; j<=n-1; j++)        { ii=i*n+j; p[ii]=q[ii];          for (kk=0; kk<=n-1; kk++)            p[ii]=p[ii]+f[i*n+kk]*a[kk*l+j];        }    for (ii=2; ii<=k; ii++)      { for (i=0; i<=n-1; i++)        for (j=0; j<=m-1; j++)          { jj=i*l+j; a[jj]=0.0;            for (kk=0; kk<=n-1; kk++)              a[jj]=a[jj]+p[i*n+kk]*h[j*n+kk];          }        for (i=0; i<=m-1; i++)        for (j=0; j<=m-1; j++)          { jj=i*m+j; e[jj]=r[jj];            for (kk=0; kk<=n-1; kk++)              e[jj]=e[jj]+h[i*n+kk]*a[kk*l+j];          }        js=rinv(e,m);        if (js==0)           { free(e); free(a); free(b); return(js);}        for (i=0; i<=n-1; i++)        for (j=0; j<=m-1; j++)          { jj=i*m+j; g[jj]=0.0;            for (kk=0; kk<=m-1; kk++)              g[jj]=g[jj]+a[i*l+kk]*e[j*m+kk];          }        for (i=0; i<=n-1; i++)          { jj=(ii-1)*n+i; x[jj]=0.0;            for (j=0; j<=n-1; j++)              x[jj]=x[jj]+f[i*n+j]*x[(ii-2)*n+j];          }        for (i=0; i<=m-1; i++)          { jj=i*l; b[jj]=y[(ii-1)*m+i];            for (j=0; j<=n-1; j++)              b[jj]=b[jj]-h[i*n+j]*x[(ii-1)*n+j];          }        for (i=0; i<=n-1; i++)          { jj=(ii-1)*n+i;            for (j=0; j<=m-1; j++)              x[jj]=x[jj]+g[i*m+j]*b[j*l];          }        if (ii<k)          { for (i=0; i<=n-1; i++)            for (j=0; j<=n-1; j++)              { jj=i*l+j; a[jj]=0.0;                for (kk=0; kk<=m-1; kk++)                  a[jj]=a[jj]-g[i*m+kk]*h[kk*n+j];                if (i==j) a[jj]=1.0+a[jj];              }            for (i=0; i<=n-1; i++)            for (j=0; j<=n-1; j++)              { jj=i*l+j; b[jj]=0.0;                for (kk=0; kk<=n-1; kk++)                  b[jj]=b[jj]+a[i*l+kk]*p[kk*n+j];              }            for (i=0; i<=n-1; i++)            for (j=0; j<=n-1; j++)              { jj=i*l+j; a[jj]=0.0;                for (kk=0; kk<=n-1; kk++)                  a[jj]=a[jj]+b[i*l+kk]*f[j*n+kk];              }            for (i=0; i<=n-1; i++)            for (j=0; j<=n-1; j++)              { jj=i*n+j; p[jj]=q[jj];                for (kk=0; kk<=n-1; kk++)                  p[jj]=p[jj]+f[i*n+kk]*a[j*l+kk];              }          }      }    free(e); free(a); free(b);    return(js);  }
C++实现代码如下:
============================kalman.h================================
// kalman.h: interface for the kalman class.
//
//
#if !defined(AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__INCLUDED_)
#define AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__INCLUDED_
#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000
#include <math.h>
#include "cv.h"
class kalman  
{
public:
 void init_kalman(int x,int xv,int y,int yv);
 CvKalman* cvkalman;
 CvMat* state; 
 CvMat* process_noise;
 CvMat* measurement;
 const CvMat* prediction;
 CvPoint2D32f get_predict(float x, float y);
 kalman(int x=0,int xv=0,int y=0,int yv=0);
 //virtual ~kalman();
};
#endif // !defined(AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__INCLUDED_)
============================kalman.cpp================================
#include "kalman.h"
#include <stdio.h>
/* tester de printer toutes les valeurs des vecteurs*/
/* tester de changer les matrices du noises */
/* replace state by cvkalman->state_post ??? */
CvRandState rng;
const double T = 0.1;
kalman::kalman(int x,int xv,int y,int yv)
{     
    cvkalman = cvCreateKalman( 4, 4, 0 );
    state = cvCreateMat( 4, 1, CV_32FC1 );
    process_noise = cvCreateMat( 4, 1, CV_32FC1 );
    measurement = cvCreateMat( 4, 1, CV_32FC1 );
    int code = -1;
    /* create matrix data */
     const float A[] = { 
   1, T, 0, 0,
   0, 1, 0, 0,
   0, 0, 1, T,
   0, 0, 0, 1
  };
     const float H[] = { 
    1, 0, 0, 0,
    0, 0, 0, 0,
   0, 0, 1, 0,
   0, 0, 0, 0
  };
     const float P[] = {
    pow(320,2), pow(320,2)/T, 0, 0,
   pow(320,2)/T, pow(320,2)/pow(T,2), 0, 0,
   0, 0, pow(240,2), pow(240,2)/T,
   0, 0, pow(240,2)/T, pow(240,2)/pow(T,2)
    };
     const float Q[] = {
   pow(T,3)/3, pow(T,2)/2, 0, 0,
   pow(T,2)/2, T, 0, 0,
   0, 0, pow(T,3)/3, pow(T,2)/2,
   0, 0, pow(T,2)/2, T
   };
     const float R[] = {
   1, 0, 0, 0,
   0, 0, 0, 0,
   0, 0, 1, 0,
   0, 0, 0, 0
   };
    cvRandInit( &rng, 0, 1, -1, CV_RAND_UNI );
    cvZero( measurement );
    cvRandSetRange( &rng, 0, 0.1, 0 );
    rng.disttype = CV_RAND_NORMAL;
    cvRand( &rng, state );
    memcpy( cvkalman->transition_matrix->data.fl, A, sizeof(A));
    memcpy( cvkalman->measurement_matrix->data.fl, H, sizeof(H));
    memcpy( cvkalman->process_noise_cov->data.fl, Q, sizeof(Q));
    memcpy( cvkalman->error_cov_post->data.fl, P, sizeof(P));
    memcpy( cvkalman->measurement_noise_cov->data.fl, R, sizeof(R));
    //cvSetIdentity( cvkalman->process_noise_cov, cvRealScalar(1e-5) );    
    //cvSetIdentity( cvkalman->error_cov_post, cvRealScalar(1));
 //cvSetIdentity( cvkalman->measurement_noise_cov, cvRealScalar(1e-1) );
    /* choose initial state */
    state->data.fl[0]=x;
    state->data.fl[1]=xv;
    state->data.fl[2]=y;
    state->data.fl[3]=yv;
    cvkalman->state_post->data.fl[0]=x;
    cvkalman->state_post->data.fl[1]=xv;
    cvkalman->state_post->data.fl[2]=y;
    cvkalman->state_post->data.fl[3]=yv;
 cvRandSetRange( &rng, 0, sqrt(cvkalman->process_noise_cov->data.fl[0]), 0 );
    cvRand( &rng, process_noise );
    }
CvPoint2D32f kalman::get_predict(float x, float y){
    /* update state with current position */
    state->data.fl[0]=x;
    state->data.fl[2]=y;
    /* predict point position */
    cvRandSetRange( &rng, 0, sqrt(cvkalman->measurement_noise_cov->data.fl[0]), 0 );
    cvRand( &rng, measurement );
     /* xk=A?xk-1+B?uk+wk */
    cvMatMulAdd( cvkalman->transition_matrix, state, process_noise, cvkalman->state_post );
    /* zk=H?xk+vk */
    cvMatMulAdd( cvkalman->measurement_matrix, cvkalman->state_post, measurement, measurement );
    /* adjust Kalman filter state */
    cvKalmanCorrect( cvkalman, measurement );
    float measured_value_x = measurement->data.fl[0];
    float measured_value_y = measurement->data.fl[2];
 const CvMat* prediction = cvKalmanPredict( cvkalman, 0 );
    float predict_value_x = prediction->data.fl[0];
    float predict_value_y = prediction->data.fl[2];
    return(cvPoint2D32f(predict_value_x,predict_value_y));
}
void kalman::init_kalman(int x,int xv,int y,int yv)
{
 state->data.fl[0]=x;
    state->data.fl[1]=xv;
    state->data.fl[2]=y;
    state->data.fl[3]=yv;
    cvkalman->state_post->data.fl[0]=x;
    cvkalman->state_post->data.fl[1]=xv;
    cvkalman->state_post->data.fl[2]=y;
    cvkalman->state_post->data.fl[3]=yv;
}
相关文章
|
6天前
|
机器学习/深度学习 存储 算法
近端策略优化(PPO)算法的理论基础与PyTorch代码详解
近端策略优化(PPO)是深度强化学习中高效的策略优化方法,广泛应用于大语言模型的RLHF训练。PPO通过引入策略更新约束机制,平衡了更新幅度,提升了训练稳定性。其核心思想是在优势演员-评论家方法的基础上,采用裁剪和非裁剪项组成的替代目标函数,限制策略比率在[1-ϵ, 1+ϵ]区间内,防止过大的策略更新。本文详细探讨了PPO的基本原理、损失函数设计及PyTorch实现流程,提供了完整的代码示例。
114 10
近端策略优化(PPO)算法的理论基础与PyTorch代码详解
|
1月前
|
算法
基于梯度流的扩散映射卡尔曼滤波算法的信号预处理matlab仿真
本项目基于梯度流的扩散映射卡尔曼滤波算法(GFDMKF),用于信号预处理的MATLAB仿真。通过设置不同噪声大小,测试滤波效果。核心代码实现数据加载、含噪信号生成、扩散映射构建及DMK滤波器应用,并展示含噪与无噪信号及滤波结果的对比图。GFDMKF结合非线性流形学习与经典卡尔曼滤波,提高对非线性高维信号的滤波和跟踪性能。 **主要步骤:** 1. 加载数据并生成含噪测量值。 2. 使用扩散映射捕捉低维流形结构。 3. 应用DMK滤波器进行状态估计。 4. 绘制不同SNR下的轨迹示例。
|
2月前
|
存储 算法 程序员
C 语言递归算法:以简洁代码驾驭复杂逻辑
C语言递归算法简介:通过简洁的代码实现复杂的逻辑处理,递归函数自我调用解决分层问题,高效而优雅。适用于树形结构遍历、数学计算等领域。
|
3月前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
99 1
|
3月前
|
存储 缓存 算法
通过优化算法和代码结构来提升易语言程序的执行效率
通过优化算法和代码结构来提升易语言程序的执行效率
|
3月前
|
算法
分享一些提高二叉树遍历算法效率的代码示例
这只是简单的示例代码,实际应用中可能还需要根据具体需求进行更多的优化和处理。你可以根据自己的需求对代码进行修改和扩展。
|
3月前
|
算法 测试技术 开发者
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗;代码审查通过检查源代码发现潜在问题,提高代码质量和团队协作效率。本文介绍了一些实用的技巧和工具,帮助开发者提升开发效率。
67 3
|
3月前
|
分布式计算 Java 开发工具
阿里云MaxCompute-XGBoost on Spark 极限梯度提升算法的分布式训练与模型持久化oss的实现与代码浅析
本文介绍了XGBoost在MaxCompute+OSS架构下模型持久化遇到的问题及其解决方案。首先简要介绍了XGBoost的特点和应用场景,随后详细描述了客户在将XGBoost on Spark任务从HDFS迁移到OSS时遇到的异常情况。通过分析异常堆栈和源代码,发现使用的`nativeBooster.saveModel`方法不支持OSS路径,而使用`write.overwrite().save`方法则能成功保存模型。最后提供了完整的Scala代码示例、Maven配置和提交命令,帮助用户顺利迁移模型存储路径。
|
4天前
|
算法 数据安全/隐私保护 计算机视觉
基于FPGA的图像双线性插值算法verilog实现,包括tb测试文件和MATLAB辅助验证
本项目展示了256×256图像通过双线性插值放大至512×512的效果,无水印展示。使用Matlab 2022a和Vivado 2019.2开发,提供完整代码及详细中文注释、操作视频。核心程序实现图像缩放,并在Matlab中验证效果。双线性插值算法通过FPGA高效实现图像缩放,确保质量。
|
1月前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。

热门文章

最新文章