卡尔曼滤波简介+ 算法实现代码(转)

简介: 卡尔曼滤波简介+ 算法实现代码(转)

最佳线性滤波理论起源于40年代美国科学家Wiener和前苏联科学家Kолмогоров等人的研究工作,后人统称为维纳滤波理论。从理论上说,维纳滤波的最大缺点是必须用到无限过去的数据,不适用于实时处理。为了克服这一缺点,60年代Kalman把状态空间模型引入滤波理论,并导出了一套递推估计算法,后人称之为卡尔曼滤波理论。卡尔曼滤波是以最小均方误差为估计的最佳准则,来寻求一套递推估计的算法,其基本思想是:采用信号与噪声的状态空间模型,利用前一时刻地估计值和现时刻的观测值来更新对状态变量的估计,求出现时刻的估计值。它适合于实时处理和计算机运算。

现设线性时变系统的离散状态防城和观测方程为:

X(k) = F(k,k-1)·X(k-1)+T(k,k-1)·U(k-1)

Y(k) = H(k)·X(k)+N(k)

其中

X(k)和Y(k)分别是k时刻的状态矢量和观测矢量

F(k,k-1)为状态转移矩阵

U(k)为k时刻动态噪声

T(k,k-1)为系统控制矩阵

H(k)为k时刻观测矩阵

N(k)为k时刻观测噪声

则卡尔曼滤波的算法流程为:

  1. 预估计X(k)^= F(k,k-1)·X(k-1)
  2. 计算预估计协方差矩阵
    C(k)^=F(k,k-1)×C(k)×F(k,k-1)'+T(k,k-1)×Q(k)×T(k,k-1)'
    Q(k) = U(k)×U(k)'
  3. 计算卡尔曼增益矩阵
    K(k) = C(k)^×H(k)'×[H(k)×C(k)^×H(k)'+R(k)]^(-1)
    R(k) = N(k)×N(k)'
  4. 更新估计
    X(k)~=X(k)^+K(k)×[Y(k)-H(k)×X(k)^]
  5. 计算更新后估计协防差矩阵
    C(k)~ = [I-K(k)×H(k)]×C(k)^×[I-K(k)×H(k)]'+K(k)×R(k)×K(k)'
  6. X(k+1) = X(k)~
    C(k+1) = C(k)~
    重复以上步骤

其c语言实现代码如下:

#include "stdlib.h"  #include "rinv.c"  int lman(n,m,k,f,q,r,h,y,x,p,g)  int n,m,k;  

double f[],q[],r[],h[],y[],x[],p[],g[];  { int i,j,kk,ii,l,jj,js;    double *e,*a,*b;    e=malloc(m*m*sizeof(double));    l=m;    if (l<n) l=n;    a=malloc(l*l*sizeof(double));    b=malloc(l*l*sizeof(double));    for (i=0; i<=n-1; i++)      for (j=0; j<=n-1; j++)        { ii=i*l+j; a[ii]=0.0;          for (kk=0; kk<=n-1; kk++)            a[ii]=a[ii]+p[i*n+kk]*f[j*n+kk];        }    for (i=0; i<=n-1; i++)      for (j=0; j<=n-1; j++)        { ii=i*n+j; p[ii]=q[ii];          for (kk=0; kk<=n-1; kk++)            p[ii]=p[ii]+f[i*n+kk]*a[kk*l+j];        }    for (ii=2; ii<=k; ii++)      { for (i=0; i<=n-1; i++)        for (j=0; j<=m-1; j++)          { jj=i*l+j; a[jj]=0.0;            for (kk=0; kk<=n-1; kk++)              a[jj]=a[jj]+p[i*n+kk]*h[j*n+kk];          }        for (i=0; i<=m-1; i++)        for (j=0; j<=m-1; j++)          { jj=i*m+j; e[jj]=r[jj];            for (kk=0; kk<=n-1; kk++)              e[jj]=e[jj]+h[i*n+kk]*a[kk*l+j];          }        js=rinv(e,m);        if (js==0)           { free(e); free(a); free(b); return(js);}        for (i=0; i<=n-1; i++)        for (j=0; j<=m-1; j++)          { jj=i*m+j; g[jj]=0.0;            for (kk=0; kk<=m-1; kk++)              g[jj]=g[jj]+a[i*l+kk]*e[j*m+kk];          }        for (i=0; i<=n-1; i++)          { jj=(ii-1)*n+i; x[jj]=0.0;            for (j=0; j<=n-1; j++)              x[jj]=x[jj]+f[i*n+j]*x[(ii-2)*n+j];          }        for (i=0; i<=m-1; i++)          { jj=i*l; b[jj]=y[(ii-1)*m+i];            for (j=0; j<=n-1; j++)              b[jj]=b[jj]-h[i*n+j]*x[(ii-1)*n+j];          }        for (i=0; i<=n-1; i++)          { jj=(ii-1)*n+i;            for (j=0; j<=m-1; j++)              x[jj]=x[jj]+g[i*m+j]*b[j*l];          }        if (ii<k)          { for (i=0; i<=n-1; i++)            for (j=0; j<=n-1; j++)              { jj=i*l+j; a[jj]=0.0;                for (kk=0; kk<=m-1; kk++)                  a[jj]=a[jj]-g[i*m+kk]*h[kk*n+j];                if (i==j) a[jj]=1.0+a[jj];              }            for (i=0; i<=n-1; i++)            for (j=0; j<=n-1; j++)              { jj=i*l+j; b[jj]=0.0;                for (kk=0; kk<=n-1; kk++)                  b[jj]=b[jj]+a[i*l+kk]*p[kk*n+j];              }            for (i=0; i<=n-1; i++)            for (j=0; j<=n-1; j++)              { jj=i*l+j; a[jj]=0.0;                for (kk=0; kk<=n-1; kk++)                  a[jj]=a[jj]+b[i*l+kk]*f[j*n+kk];              }            for (i=0; i<=n-1; i++)            for (j=0; j<=n-1; j++)              { jj=i*n+j; p[jj]=q[jj];                for (kk=0; kk<=n-1; kk++)                  p[jj]=p[jj]+f[i*n+kk]*a[j*l+kk];              }          }      }    free(e); free(a); free(b);    return(js);  }
C++实现代码如下:
============================kalman.h================================
// kalman.h: interface for the kalman class.
//
//
#if !defined(AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__INCLUDED_)
#define AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__INCLUDED_
#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000
#include <math.h>
#include "cv.h"
class kalman  
{
public:
 void init_kalman(int x,int xv,int y,int yv);
 CvKalman* cvkalman;
 CvMat* state; 
 CvMat* process_noise;
 CvMat* measurement;
 const CvMat* prediction;
 CvPoint2D32f get_predict(float x, float y);
 kalman(int x=0,int xv=0,int y=0,int yv=0);
 //virtual ~kalman();
};
#endif // !defined(AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__INCLUDED_)
============================kalman.cpp================================
#include "kalman.h"
#include <stdio.h>
/* tester de printer toutes les valeurs des vecteurs*/
/* tester de changer les matrices du noises */
/* replace state by cvkalman->state_post ??? */
CvRandState rng;
const double T = 0.1;
kalman::kalman(int x,int xv,int y,int yv)
{     
    cvkalman = cvCreateKalman( 4, 4, 0 );
    state = cvCreateMat( 4, 1, CV_32FC1 );
    process_noise = cvCreateMat( 4, 1, CV_32FC1 );
    measurement = cvCreateMat( 4, 1, CV_32FC1 );
    int code = -1;
    /* create matrix data */
     const float A[] = { 
   1, T, 0, 0,
   0, 1, 0, 0,
   0, 0, 1, T,
   0, 0, 0, 1
  };
     const float H[] = { 
    1, 0, 0, 0,
    0, 0, 0, 0,
   0, 0, 1, 0,
   0, 0, 0, 0
  };
     const float P[] = {
    pow(320,2), pow(320,2)/T, 0, 0,
   pow(320,2)/T, pow(320,2)/pow(T,2), 0, 0,
   0, 0, pow(240,2), pow(240,2)/T,
   0, 0, pow(240,2)/T, pow(240,2)/pow(T,2)
    };
     const float Q[] = {
   pow(T,3)/3, pow(T,2)/2, 0, 0,
   pow(T,2)/2, T, 0, 0,
   0, 0, pow(T,3)/3, pow(T,2)/2,
   0, 0, pow(T,2)/2, T
   };
     const float R[] = {
   1, 0, 0, 0,
   0, 0, 0, 0,
   0, 0, 1, 0,
   0, 0, 0, 0
   };
    cvRandInit( &rng, 0, 1, -1, CV_RAND_UNI );
    cvZero( measurement );
    cvRandSetRange( &rng, 0, 0.1, 0 );
    rng.disttype = CV_RAND_NORMAL;
    cvRand( &rng, state );
    memcpy( cvkalman->transition_matrix->data.fl, A, sizeof(A));
    memcpy( cvkalman->measurement_matrix->data.fl, H, sizeof(H));
    memcpy( cvkalman->process_noise_cov->data.fl, Q, sizeof(Q));
    memcpy( cvkalman->error_cov_post->data.fl, P, sizeof(P));
    memcpy( cvkalman->measurement_noise_cov->data.fl, R, sizeof(R));
    //cvSetIdentity( cvkalman->process_noise_cov, cvRealScalar(1e-5) );    
    //cvSetIdentity( cvkalman->error_cov_post, cvRealScalar(1));
 //cvSetIdentity( cvkalman->measurement_noise_cov, cvRealScalar(1e-1) );
    /* choose initial state */
    state->data.fl[0]=x;
    state->data.fl[1]=xv;
    state->data.fl[2]=y;
    state->data.fl[3]=yv;
    cvkalman->state_post->data.fl[0]=x;
    cvkalman->state_post->data.fl[1]=xv;
    cvkalman->state_post->data.fl[2]=y;
    cvkalman->state_post->data.fl[3]=yv;
 cvRandSetRange( &rng, 0, sqrt(cvkalman->process_noise_cov->data.fl[0]), 0 );
    cvRand( &rng, process_noise );
    }
CvPoint2D32f kalman::get_predict(float x, float y){
    /* update state with current position */
    state->data.fl[0]=x;
    state->data.fl[2]=y;
    /* predict point position */
    cvRandSetRange( &rng, 0, sqrt(cvkalman->measurement_noise_cov->data.fl[0]), 0 );
    cvRand( &rng, measurement );
     /* xk=A?xk-1+B?uk+wk */
    cvMatMulAdd( cvkalman->transition_matrix, state, process_noise, cvkalman->state_post );
    /* zk=H?xk+vk */
    cvMatMulAdd( cvkalman->measurement_matrix, cvkalman->state_post, measurement, measurement );
    /* adjust Kalman filter state */
    cvKalmanCorrect( cvkalman, measurement );
    float measured_value_x = measurement->data.fl[0];
    float measured_value_y = measurement->data.fl[2];
 const CvMat* prediction = cvKalmanPredict( cvkalman, 0 );
    float predict_value_x = prediction->data.fl[0];
    float predict_value_y = prediction->data.fl[2];
    return(cvPoint2D32f(predict_value_x,predict_value_y));
}
void kalman::init_kalman(int x,int xv,int y,int yv)
{
 state->data.fl[0]=x;
    state->data.fl[1]=xv;
    state->data.fl[2]=y;
    state->data.fl[3]=yv;
    cvkalman->state_post->data.fl[0]=x;
    cvkalman->state_post->data.fl[1]=xv;
    cvkalman->state_post->data.fl[2]=y;
    cvkalman->state_post->data.fl[3]=yv;
}
相关文章
|
12天前
|
存储 算法 调度
【复现】【遗传算法】考虑储能和可再生能源消纳责任制的售电公司购售电策略(Python代码实现)
【复现】【遗传算法】考虑储能和可再生能源消纳责任制的售电公司购售电策略(Python代码实现)
115 26
|
12天前
|
存储 编解码 算法
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
|
9天前
|
机器学习/深度学习 人工智能 搜索推荐
从零构建短视频推荐系统:双塔算法架构解析与代码实现
短视频推荐看似“读心”,实则依赖双塔推荐系统:用户塔与物品塔分别将行为与内容编码为向量,通过相似度匹配实现精准推送。本文解析其架构原理、技术实现与工程挑战,揭秘抖音等平台如何用AI抓住你的注意力。
161 7
从零构建短视频推荐系统:双塔算法架构解析与代码实现
|
12天前
|
机器学习/深度学习 传感器 算法
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
103 14
|
12天前
|
机器学习/深度学习 运维 算法
【微电网多目标优化调度】多目标学习者行为优化算法MOLPB求解微电网多目标优化调度研究(Matlab代码实现)
【微电网多目标优化调度】多目标学习者行为优化算法MOLPB求解微电网多目标优化调度研究(Matlab代码实现)
|
12天前
|
算法 数据可视化 异构计算
【车辆路径问题VRPTW】基于北极海鹦优化(APO)算法求解带时间窗的车辆路径问题VRPTW研究(Matlab代码实现)
【车辆路径问题VRPTW】基于北极海鹦优化(APO)算法求解带时间窗的车辆路径问题VRPTW研究(Matlab代码实现)
116 0
|
12天前
|
机器学习/深度学习 运维 算法
【复现】基于改进秃鹰算法的微电网群经济优化调度研究(Matlab代码实现)
【复现】基于改进秃鹰算法的微电网群经济优化调度研究(Matlab代码实现)
|
14天前
|
传感器 机器学习/深度学习 算法
【使用 DSP 滤波器加速速度和位移】使用信号处理算法过滤加速度数据并将其转换为速度和位移研究(Matlab代码实现)
【使用 DSP 滤波器加速速度和位移】使用信号处理算法过滤加速度数据并将其转换为速度和位移研究(Matlab代码实现)
101 1
|
13天前
|
传感器 机器学习/深度学习 算法
【UASNs、AUV】无人机自主水下传感网络中遗传算法的路径规划问题研究(Matlab代码实现)
【UASNs、AUV】无人机自主水下传感网络中遗传算法的路径规划问题研究(Matlab代码实现)
|
15天前
|
传感器 算法 数据挖掘
基于协方差交叉(CI)的多传感器融合算法matlab仿真,对比单传感器和SCC融合
基于协方差交叉(CI)的多传感器融合算法,通过MATLAB仿真对比单传感器、SCC与CI融合在位置/速度估计误差(RMSE)及等概率椭圆上的性能。采用MATLAB2022A实现,结果表明CI融合在未知相关性下仍具鲁棒性,有效降低估计误差。
131 15

热门文章

最新文章