【Java多线程】线程安全问题与解决方案

简介: 【Java多线程】线程安全问题与解决方案

1、线程安全问题

  • 某个代码,无论是单线程下执行还是多线程下执行都不会产生bug,被称之为“线程安全”;
  • 如果在单线程下执行正确,但是多线程下会产生bug,被称之为“线程不安全”或者“存在线程安全问题”;

线程安全问题的典型例子:


public class ThreadDemo {
    private static int count = 0;
    public static void main(String[] args) throws InterruptedException {
        // 创建两个线程. 每个线程都针对上述 count 变量循环自增 50w 次
        Thread t1 = new Thread(() -> {
            for (int i = 0; i < 500000; i++) {
                count++;
            }
        });
        Thread t2 = new Thread(() -> {
            for (int i = 0; i < 500000; i++) {
                count++;
            }
        });
        t1.start();
        t2.start();
        t1.join();
        t2.join();
        System.out.println("count = " + count);
    }
}


       按照正常逻辑来看这段代码,结果应该是100w,但是通过多次运行发现这里给的却是一个50w到100w的随机值, 这就是因为出现了线程安全问题导致的结果错误。


问题分析:


count++操作实际上分成三步:


1)load 从内存中读取数据到cpu的寄存器


2)add 把寄存器中的值+1


3)save 把寄存器的值写回内存中


       而由于线程调度是随机调度,抢占式执行的,这就导致了两个线程的count++操作三步骤是会被打乱顺序的。


       例如 t1 线程先执行到 1)的同时, t2 线程也刚好随机调度开始执行 1),导致t1 和 t2 读取到的数据都是0,此时 t1 线程对 寄存器中值0+1,并将 1 写回内存中,接着 t2 也执行相同操作,再次将 1 写回内存中。此时就出现了线程安全问题,两次count++却只让count自增了1次。这就是这段代码为什么不是100w的原因细节。


1.2、线程安全原因

透过两个线程分别对count++,可以看到线程的不安全,有以下原因:

1、根本原因,操作系统上线程的调度策略是“随机调度,抢占式执行”的,这就给线程之间执行的顺序带来了很多的变数。是线程安全问题的“罪魁祸首”。

2、代码结构问题,代码中多个线程同时修改一个变量。

3、直接原因,上述多线程修改操作,本身不是“原子的”,即实际count++操作又被分成了三步操作。如果操作本身是“原子的”,那么它要么执行,要么不执行,就不会出现执行一半,就被调度走,让其他线程“可乘之机”。


  • 针对原因1,系统底层对调度线程的逻辑就是随机调度,抢占式执行,无法干预做出任何调整。
  • 针对原因2,代码结构问题有时候是需求决定的,并不是每次都可以从这里入手,因此对于原因2也不好调整。
  • 针对原因3,既然操作非“原子的”,那么可以通过一些特殊手段将其打包成为“整体”,这也是我们接下来要讲到的加锁。

2、线程加锁

2.1、synchronized 关键字


其中 locker 可以是任意对象,进入 synchronized 修饰的代码块, 相当于加锁,退出 synchronized 修饰的代码块, 相当解锁。


如果一个线程,针对一个对象加上锁之后,其他线程也尝试对这个对象加锁,就会导致锁竞争进而引起阻塞(BLOCKED),这个阻塞会一直持续到上一个线程释放锁为止。

如果是两个线程分别针对不同的对象进行加锁,此时不会由锁竞争,也就不会阻塞。


可以形象的理解成,每个对象在内存中存储的时候,都存有一块内存表示当前的 "锁定" 状态(类似于厕所的 "有人/无人")。


如果当前是 "无人" 状态,那么就可以使用,使用时需要设为 "有人" 状态。


如果当前是 "有人" 状态,那么其他人无法使用,只能排队。


2.2、完善代码

public class ThreadDemo {
    private static int count = 0;
    public static void main(String[] args) throws InterruptedException {
        // 随便创建个对象都行
        Object locker = new Object();
        // 创建两个线程. 每个线程都针对上述 count 变量循环自增 50w 次
        Thread t1 = new Thread(() -> {
            for (int i = 0; i < 500000; i++) {
                synchronized (locker) {   //对count++进行加锁操作,打包三步为一步
                    count++;
                }
            }
        });
        Thread t2 = new Thread(() -> {
            for (int i = 0; i < 500000; i++) {
                synchronized (locker) {   //对count++进行加锁操作,打包三步为一步
                    count++;
                }
            }
        });
        t1.start();
        t2.start();
        t1.join();
        t2.join();
        System.out.println("count = " + count);
    }
}


通过对count++的整体加锁,使得每一次的count++都是一个整体,解决了此处的线程安全问题。


2.3、对同一个线程的加锁操作

public static void main(String[] args) {
    Object locker = new Object();
    Thread t = new Thread(() -> {
        synchronized (locker) {
            synchronized (locker) {
                System.out.println("hello synchronized");
            }
        }
    });
    t.start();
}

需要注意的是,这里最直观的感觉是进行了两次加锁,会发生锁冲突。第一次针对locker加锁之后,在还没释放锁的时候又尝试对locker加锁,理论会出现锁冲突,但是这里却可以正常打印。


最关键的问题在于,【Java中的锁是可重入锁】。这两次加锁,其实是在同一个线程中进行的,如果是同一个线程对同一个锁的多次加锁,是不会冲突的。


3、内容补充

当然,还有其他能够导致出现线程安全问题的原因:内存可见性问题以及指令重排序问题


3.1、内存可见性问题

下列代码原本用意是:当用户输入非0数字时,结束线程t1。


package thread;
import java.util.Scanner;
public class ThreadDemo {
    private static int flag = 0;   
    public static void main(String[] args) {
        Thread t1 = new Thread(() -> {
            while (flag == 0) {
                // 循环体里, 啥都不写会触发内存可见性问题
            }
            System.out.println("t1 线程结束!");
        });
        Thread t2 = new Thread(() -> {
            System.out.println("请输入 flag 的值: ");
            Scanner scanner = new Scanner(System.in);
            flag = scanner.nextInt();
        });
        t1.start();
        t2.start();
    }
}


实际运行结果时发现无法结束,t2修改了内存,但是t1内有看到这个内存的变化,就称之为“内存可见性”问题。出现这一问题是JVM的代码优化导致的。


t1 线程中的while语句每次循环是都有两个操作:


1、load 读取内存中 flag 的值到 cpu 寄存器中


2、拿到寄存器的值和 0 比较


上述循环中循环的执行速度非常之快,反复的执行1和2,即使是1秒也可能反复执行了几百万次。而在执行的过程中,有两个关键要点:


1、JVM识别到 load 操作执行的几百万次结果每次都一样(输入前的等待时间里)。


2、而由于 load 操作花费的开销远远超过剩余的其他操作(访问寄存器的操作速度远远超过访问内存)


每次循环可能就是百分之九十九的时间都消耗在 load 操作上,而百分之一的时间消耗在其他操作上,而且JVM发现每次 load 操作读取到的数据都是一样的,那么此时JVM就会认为此处每次 load 的操作是否有存在的必要呢,于是乎JVM就可能会自动执行了代码优化,将上述的 load 操作优化了(只有前几次进行了 load,后续发现 load 一直没有变化,分析代码也没发现哪里修改了flag,因此激进的将load操作优化成了直接使用寄存器中之前“缓存”的值),从而达到大幅度提高循环的执行速度的目的。


3.2、指令重排序问题

指令重排序也是编译器优化的一种方式。保证逻辑不变的前提下,调整原有代码的执行顺序,提高程序的效率。


3.3、解决方法

由于上述两种问题都是由于JVM代码优化导致的。


Java提供的 volatile 关键字就可以使上述的优化被强制关闭,可以确保每次循环条件都会重新从内存中读取数据。

强制读取内存,虽然开销大了,效率也低了,但是数据的准确性、逻辑的准确性都提高了。



只需要对 flag 添加一个 volatile 关键字即可解决这一问题。



3.4、总结 volatile 关键字

1、保证内存可见性,每次访问变量必须都要重新读取内存,而不会优化到寄存器/缓存中

2、禁止指令重排序,针对被 volatile 修饰的变量的读写操作相关指令,是不能被重排序的。


目录
相关文章
|
8天前
|
安全 Java API
java如何请求接口然后终止某个线程
通过本文的介绍,您应该能够理解如何在Java中请求接口并根据返回结果终止某个线程。合理使用标志位或 `interrupt`方法可以确保线程的安全终止,而处理好网络请求中的各种异常情况,可以提高程序的稳定性和可靠性。
37 6
|
21天前
|
存储 监控 小程序
Java中的线程池优化实践####
本文深入探讨了Java中线程池的工作原理,分析了常见的线程池类型及其适用场景,并通过实际案例展示了如何根据应用需求进行线程池的优化配置。文章首先介绍了线程池的基本概念和核心参数,随后详细阐述了几种常见的线程池实现(如FixedThreadPool、CachedThreadPool、ScheduledThreadPool等)的特点及使用场景。接着,通过一个电商系统订单处理的实际案例,分析了线程池参数设置不当导致的性能问题,并提出了相应的优化策略。最终,总结了线程池优化的最佳实践,旨在帮助开发者更好地利用Java线程池提升应用性能和稳定性。 ####
|
16天前
|
安全 算法 Java
Java多线程编程中的陷阱与最佳实践####
本文探讨了Java多线程编程中常见的陷阱,并介绍了如何通过最佳实践来避免这些问题。我们将从基础概念入手,逐步深入到具体的代码示例,帮助开发者更好地理解和应用多线程技术。无论是初学者还是有经验的开发者,都能从中获得有价值的见解和建议。 ####
|
16天前
|
Java 调度
Java中的多线程编程与并发控制
本文深入探讨了Java编程语言中多线程编程的基础知识和并发控制机制。文章首先介绍了多线程的基本概念,包括线程的定义、生命周期以及在Java中创建和管理线程的方法。接着,详细讲解了Java提供的同步机制,如synchronized关键字、wait()和notify()方法等,以及如何通过这些机制实现线程间的协调与通信。最后,本文还讨论了一些常见的并发问题,例如死锁、竞态条件等,并提供了相应的解决策略。
40 3
|
17天前
|
监控 Java 开发者
深入理解Java中的线程池实现原理及其性能优化####
本文旨在揭示Java中线程池的核心工作机制,通过剖析其背后的设计思想与实现细节,为读者提供一份详尽的线程池性能优化指南。不同于传统的技术教程,本文将采用一种互动式探索的方式,带领大家从理论到实践,逐步揭开线程池高效管理线程资源的奥秘。无论你是Java并发编程的初学者,还是寻求性能调优技巧的资深开发者,都能在本文中找到有价值的内容。 ####
|
20天前
|
监控 Java 数据库连接
Java线程管理:守护线程与用户线程的区分与应用
在Java多线程编程中,线程可以分为守护线程(Daemon Thread)和用户线程(User Thread)。这两种线程在行为和用途上有着明显的区别,了解它们的差异对于编写高效、稳定的并发程序至关重要。
28 2
|
20天前
|
监控 Java 开发者
Java线程管理:守护线程与本地线程的深入剖析
在Java编程语言中,线程是程序执行的最小单元,它们可以并行执行以提高程序的效率和响应性。Java提供了两种特殊的线程类型:守护线程和本地线程。本文将深入探讨这两种线程的区别,并探讨它们在实际开发中的应用。
27 1
|
7月前
|
安全 Java
java保证线程安全关于锁处理的理解
了解Java中确保线程安全的锁机制:1)全局synchronized方法实现单例模式;2)对Vector/Collections.SynchronizedList/CopyOnWriteArrayList的部分操作加锁;3)ConcurrentHashMap的锁分段技术;4)使用读写锁;5)无锁或低冲突策略,如Disruptor队列。
50 2
|
7月前
|
存储 安全 Java
深入理解Java并发编程:线程安全与锁机制
【5月更文挑战第31天】在Java并发编程中,线程安全和锁机制是两个核心概念。本文将深入探讨这两个概念,包括它们的定义、实现方式以及在实际开发中的应用。通过对线程安全和锁机制的深入理解,可以帮助我们更好地解决并发编程中的问题,提高程序的性能和稳定性。
|
5月前
|
存储 SQL 安全
Java共享问题 、synchronized 线程安全分析、Monitor、wait/notify以及锁分类
Java共享问题 、synchronized 线程安全分析、Monitor、wait/notify以及锁分类
50 0